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ABSTRACT

Since ancient times, adversary modeling has been used
during wargaming exercises 1in which military leaders have
recreated past battles or simulated future battles in order
to educate military professionals. Although the technology
today i1s much different, adversary modeling still serves the
same goals - to help military professionals learn tactics
from past successes and mistakes. In the computer age,
highly accurate models and simulations of the enemy can be
created. However, including the effects of motivations,
capabilities, and weaknesses of adversaries in current wars
is still extremely difficult.

Limit Texas Hold’em poker, with many attributes similar
to real-world warfare, is an excellent test-bed to study and
improve adversary modeling. For example, stochastic
outcomes which deal with multiple independent agents,
deception, and acting amidst uncertainty, are some of the
aspects of poker that closely resemble important aspects of
warfare. These attributes make poker a better choice as a
study platform than other traditional games, such as chess,
where there is no deception or uncertainty.

The defined rules of poker provide researchers with a
controlled environment to improve and test adversary-
modeling techniques. Perfecting adversary modeling in poker
will allow simulators to improve and generate more accurate
models for wargames, giving warfighters the advantage in

current and future battles.
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I. INTRODUCTION

A. HISTORY OF ADVERSARY MODELING

The importance of adversary modeling has been known for
centuries. Sun Tzu [1], the 6th Century B.C. military

strategist wrote:

If you know the enemy and know yourself, you need
not fear the result of a hundred battles. If you
know yourself but not the enemy, for each victory
gained, you will also suffer a defeat.

Adversary modeling has been used since ancient times in
a military context during a process called wargaming.
During a wargame, commanders seek to improve their battle
plan by stepping through the plan with consideration given
to the enemy’s actions, reactions, strengths and weaknesses.
Adversary modeling is conducted by an intelligence officer
who has studied the enemy’s capabilities and whose goal is

to defeat the commander’s plan so as to improve the plan.

Besides military applications, adversary modeling is
used 1in a wide variety of areas. For example, 1in the
computer-security realm, network-security professionals
frequently create models of potential attackers in order to
help them identify when their systems are being attacked.
Additionally, adversary modeling has been studied and shown
to improve bot performances in games such as Scrabble and

RoShamBo [2],[31,[4].



1. Pre-Computer Adversary Modeling

Games 1like Go and Chess were used teach soldiers
competence in Dbattlefield situations. In these games,
adversary modeling 1s not as important Dbecause they are
perfect information games where all elements of the game
(i.e., game board and game pieces) are known to all players.
However, in actual wargaming situations, only limited
information about the enemy is known and the rest must be
inferred by an intelligence officer. Using the simplest
adversary model, the intelligence officer acts as a friendly
commander would act. While this approach does help find
some weaknesses in a plan, it is far from being realistic.
A much Dbetter model would simulate the enemy’s actions
according to that enemy’s own doctrine. Although the
benefits of this model are enormous Dbecause the enemy
actions can reflect the leadership of a specific enemy
commander, it necessitates a thorough understanding of the
enemy commander’s tactics and observations obtained through

vigorous analysis from many previous battles.

2. Computational Approaches

Since the advent of computers, wargaming has improved
through more complex modeling and simulations. Using a
computer and simulated battles, models of friendly and enemy
units can fight with no loss of 1life, equipment, or other
valuable resources. An accurate knowledge of an enemy’s
doctrine, tactics, and motivations can tremendously improve
the accuracy of these models and simulations. These
modeling and simulation techniques have Dbeen incorporated

into a commercial setting with the popularity of wvideo

2



games. Today, countless video games simulate old battles or
create fictional or fantastic scenarios allowing players to

wage battles with different tactics.

B. IMPORTANCE OF ADVERSARY MODELING

In all of the situations described above, highly
accurate models of opponents increase the utility of the
game. In commercial computer games, this makes a more
realistic and higher selling game. In the wargaming
scenario, a better model of the enemy helps create a better

plan to defeat the enemy.

1. Military and Intelligence Community Adversary
Modeling

During the Cold War, adversary models were simpler than
they are today because Soviet doctrine was relatively well
known. Battles and wars could be simulated during the
wargame based on knowledge gleaned from past battles, known
tactics and commanders, and obvious motivations and morale
of the soldiers. Since the end of the Cold war and the
beginning of the War on Terror, adversary models have become
increasingly difficult to create accurately. Not only do
motivations of a terrorist differ greatly from the
motivations of a soldier fighting for his state, motivations
of different terrorist groups can be vastly different from
each other as well. For these reasons, modeling in this new

age of warfare is very difficult.

2. Poker Adversary Modeling

The game of poker provides an excellent test-bed for
adversary modeling. Poker is a game containing stochastic

3



events, imperfect information, multiple competing agents,
and deception. Like the real-world scenario of warfare,
adversary modeling substantially improves performance in a

poker game.

a. Introduction to Poker

In our studies, we use Limit Texas Hold’em Poker.
The game is played with blind bets that players must make
before cards are dealt. The first person to the left of the
dealer begins with a bet called the “small blind.” The
person on their left follows the small blind with a bet
called the “big blind,” which is twice the size of the small
blind. These Dbets, similar to an ante, are wused to
instigate action, or encourage others to Dbet. All
subsequent bets and raises in the first to rounds are the

size of the big blind.

A hand begins with each player being dealt two

(4

cards, called “hole cards,” only known to that player. The
blinds are considered legal bets; therefore, the person to
the left of the big blind is the first person to act after
looking at their hole cards. This person now has three
options - fold, call, or raise. A “fold” means that the
player does not wish to continue and opts out of the hand.
A “call” means that the player wishes to play for the number
of bets that has already been established (in this case one
— the big blind). A “raise” means that the player wishes to
increase the number of bets from one (the big blind) to two
(twice the amount of the big blind). This concept of the
number of bets is sometimes referred to as “bets-to-go” or

“bets-to-call.” Two Dbets-to-go simply means that all

players who want to remain in the hand must pay two bets.
4



Play continues around the table until all players have
either folded or called the highest raise. (Note: rules
dictate that all betting rounds are capped at four bets.)
If only one player remains, that player wins all the money
in the pot and does not have to show their cards. The

action up to this point is referred to as “pre-flop.”

The “flop” is when three community cards (also
called board cards) are placed face up in the center of the
table. These cards are used by all players remaining in the
hand. All remaining action is referred to as “post-flop.”
At this point, another round of betting begins. The first
player remaining in the hand to the left of the dealer acts
first. He can “check” or “bet.” A check means that the
player does not want to bet, and since no one else has bet,
the player does not have to fold. A check keeps the game at
zero bets-to-go while a bet makes it one bet-to-go. The
betting continues as before, until everyone has folded or
called the highest bet, or until only one player remains.
Again the betting i1s capped at four bets-to-go. Now, a
fourth community card, called the “turn,” is dealt. This is
followed by another betting round; however, all bets for
this round and the final betting round are twice the size as
the bets in the first two rounds. Finally, the “river” is
the fifth and final community to be dealt. Following the
river, there is a final betting round. At the end of this
betting round, if more than one player remains, there is a
“showdown” where the remaining players’ cards are revealed.
The highest five-card poker hand—five cards can be taken

from any combination of the player’s two hole cards and the



five community cards—wins the pot. The hand is now over,
and the dealer position is moved one seat to the left to

initiate a new hand.

For simplicity, player’s actions can be viewed as
three choices: raise, call or fold. Bets and raises can be
abstracted together and called a raise. A bet is simply a
special case of a raise when the betting round is zero bets-
to-go. Similarly, a check and call can be abstracted to a
call, the check being a special case of a call when a player

does not want to increase the number of bets-to-go from

zZero.
b. Importance of Adversary Modeling in Poker
Adversary modeling is a vital part of maximizing

your ©play i1in poker. Research has shown that the game-

theoretic optimal solution does not necessarily result in
the best poker player [5]. Game theory approaches result in
good but defensive play, where a player will never lose big,
but they will also never win big. A good model of a poker
adversary will allow us to exploit their weaknesses, thereby

allowing us to win larger amounts of money.

C. MOTIVATION AND PURPOSE OF STUDY

Poker allows us to improve adversary-modeling
techniques in a structured domain. Not only does poker
sufficiently 1limit the domain with its rule set, its
stochastic elements and hidden information provide a high
resemblance to real-world adversarial situations, providing

an accurate test-bed for adversary-modeling research.



In poker, every opponent has hidden information. More
specifically, their hole cards are known only at the end of
a hand, if at all. To apply this concept to warfare, it is
evident that enemies have secrets. For example, the number
of members in a terrorist cell 1is hidden and can change
frequently, making that information impossible to know at
all times. The dealing of cards 1is a stochastic event,
which can be comparable to the numbers of disaffected youths
that could be influenced by terrorist rhetoric. The
strength of a player’s hand can be determined and compared
to the other possibilities of an opponents hand based on the
community cards. Correspondingly, the strengths of
terrorist groups might be calculated and compared. The
number of bets-to-call could parallel the cost of military
or political actions. In poker, “pot odds” is a measure of
the reward of an action compared to the cost of that action

and could be analogous to many military operations.
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II. RELATED WORK

In the last decade, an increasing number of researchers
began studying poker. For the last two years, a poker bot
competition has been part of the annual Association for the
Advancement of Artificial 1Intelligence (AAAI) convention.
The fixed nature of this game (e.g. rules, betting actions)
allows researches to build and improve adversary modeling
techniques that «can then Dbe used in other domains.
Adversary modeling 1s an important aspect of successful

poker bots.

A. THE UNIVERSITY OF ALBERTA’'S COMPUTER POKER RESEARCH
GROUP

The University of Alberta’s (U of A) Computer Poker
Research Group (CPRG) conducted the seminal research in this
field. In [6], Billings provides a concise synopsis of the
major accomplishment of the CPRG. Perhaps most importantly,
they established a publicly available corpus of poker game
data that can aid in adversary-modeling experiments. They
studied limit Texas Hold’em—recently focusing on heads-up

games involving only two players.

Their research began with poker bots that are derived
from a rule-based system. As 1s typical in artificial
intelligence, this method has only limited effectiveness
while the rules and knowledge base increase rapidly. The
CPRG then attempted to calculate optimal ©play game
theoretically. Finally, the CPRG experimented with using

game-tree search methods to make decisions that result in



the highest expected value. Varying degrees of adversary

modeling are attempted by the CPRG, as discussed below.

1. Knowledge-Based Poker Player

The first iterations of the U of A’s CPRG’s poker bots
used knowledge-based artificial intelligence to establish a
baseline. Only average poker play was attainable before the
knowledge base and rules became too large and complex. The
adversary modeling performed in this poker bot was based on
observed statistics. The crucial information to deduce 1is
the adversary’s hole cards. In the CPRG’s studies, the
opponent’s hole cards are abstracted into 169 distinct
hands. There are 13 different ranks, Two through Ace, and
the cards are either suited or unsuited—-making 169 distinct

hands.

The simplest starting point for the probability of an
adversary’s hole cards 1is to assume a flat probability
distribution function. This will provide a baseline, but
will not correctly represent the probability of an adversary
playing those hands because most players will play “better”
hands with more probability than Y“worse” hands. The key
variable is to determine which cards an opponent deems

“better.”

Using the “reasonable man” approach, the CPRG developed
a generic adversary model (GOM) to infer which hole cards an
average player is going to play. Billings et al. calculate
an 1income rate, which 1is the expected wvalue, for each
possible pair of hole <cards wusing simulations in [8].
Obviously, a “reasonable man” is less likely to play hands

that result in a negative income. They assign probabilities

10



to each of the 169 starting hands that are based on the
calculated income rate of that hand. As the play of a hand
unfolds, they adjust these probabilities based on actions in
a hand. For example, 1f the adversary raises, the
probabilities assigned to the hands with high income rates

are increased, while the probabilities for the hands with

low 1income rates are decreased. The increases are done
based on rules that are applied to all players. However,
not all players act as this GOM does. Some players are

attracted to straights and flushes and are thus more likely
to play cards that have a Dbetter chance of making those

hands.

The CPRG performs specific opponent modeling (SOM) by
changing the weights differently for each individual
adversary. For example, i1if an adversary usually bets with a
flush draw, their algorithm will increase the probabilities
of those hands that give the adversary a flush draw. In
order to deduce the probabilities to use at the start of a
hand for a specific adversary, the CPRG maintains counts of
betting frequencies in certain contexts of the game. As
discussed in the introduction to poker, there are three
actions: Dbet, call or fold. Their system tracks the
frequencies of these actions in twelve different contexts:
based on the betting round (pre-flop, flop, turn, river) and
the number of bets-to-call (zero, one and two or more).
Over time, these frequencies would begin to evolve and could
lead one to make assumptions about an adversary. For
example, if a player bet 35% of the time after the flop when
there are =zero Dbets-to-call, one could assume that the
adversary would bet with the top 35% of hands, or the top

30% of hands and the other 5% based on strong drawing hands.
11



For pre-flop frequencies, these percentages are mapped back
to the income rates. Post-flop, the frequencies are mapped
to a hand strength based on possible adversary hole cards
combined with the board cards. 1In [8], the CPRG admits that
this method is flawed because it 1s based on the CPRG’s
calculations of income rates and hand strengths, which may
be different from how the adversary calculates the strength

of their hand.

In [9], the CPRG improved this method of adversary
modeling based on the results of experiments with Artificial
Neural Networks (ANNs). They used 19 different aspects of
the game context as inputs to the ANN which would then
produce a 1likelihood of a raise, call, or fold from an
adversary. They determined that ANNs were good at filtering
out noisy aspects of game contexts, but required too many
historical hands before becoming accurate. Thus, ANNs are
not feasible for the real-time nature of poker. However,
they did ascertain that “last Dbets-to-call” and “last
action” were important factors for an adversary’s decision.
These two dimensions of the game were added to the
statistical model described above which produced improved

results.

In the methods described above, there is minimal use of
the board cards in the context of the game, which seems to

be a conspicuous weakness.

2. Game Theoretic Methods

The CPRG devotes time to finding the game-theoretic
optimal solution at each decision node. They apply a

randomized mixed strategy to the adversary’s actions. With
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no adversary modeling done in these experiments, the actions
of the poker bot are only based only on known cards. The
play of their bot improves significantly over the knowledge-
based system and is even able to initially play well against
a professional poker player. However, given more time, the
professional is able to discover weaknesses and can exploit

the bot [5].

3. Game Tree Search Methods

In their next set of experiments, the CPRG employs
methods that search game trees in order to maximize the
expected value (EV) of their decisions [10],[11]. In their
game tree, there are four different types of nodes: chance
nodes, adversary decision nodes, program decision nodes and
leaf nodes. The chance nodes simply relate to the possible
cards that could follow based on the known cards up to that
point. The program decision nodes are where the program
decides which action will result in the highest EV, with
some variability added to disguise the program’s play. The
adversary decision nodes are an estimated probability that
the adversary will take each action: raise, call, or fold.
This probability is based on counts of past actions at the
corresponding point in the game tree and is in no way
affected by the cards the adversary holds or the community
cards, even 1if the previous counts ended in a showdown,
where the adversary’s cards are revealed. The leaf nodes
contain the EV of that node and the probability of winning
the pot. The probability of winning the pot is determined
using a histogram of previous hand strengths that the
adversary has shown at showdowns that correspond to that

leaf in the game tree. The program will compare its hand
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strength at that leaf to the hand strength histogram of the

adversary to determine the probability of winning the hand.

This method uses abstractions when the game tree is
incomplete in order to be effective when little information
is known. One abstraction is obtained by using all branches
of the game tree that have the same number of bets and
raises, 1gnoring when the Dbets and raises are made.
Another, finer-grained version of that abstraction uses all
branches with the same ordered pair of the total bets and
raises of both players. A more coarse-grained abstraction

is simply the total number of Dbets and raises Dby both

players. Another form of abstraction considers only the
final size of the pot. In their experiments, the CPRG uses
a combination of all of these abstractions. The

abstractions are weighted stronger for the finer granularity
of the abstraction and a mixture of all is used based on the
weighting system. Generic adversary models are used as
defaults wuntil enough hands are recorded to make the

specific adversary modeling precise.

This method completely ignores the fact that the board
cards will factor into the adversary’s decision making
process. Additionally, a high computation time is needed
for all decisions because the entire game tree must be

searched to completion for each decision.

4. Bayes’ Bluff
In (1271, Southey, et al, experiment with a
probabilistic model for opponent modeling. Each player has

a strategy that is known only by them. Each player also has

an information set for each hand consisting of the cards
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visible to them. Using Bayes’ Rule, the probabilities of an
opponent playing different strategies are calculated using
the observations of all hands—hands that go to a showdown
and hands that are folded. Next, the authors wuse the
posterior distribution over the strategies to determine the
best response to an opponent in the current hand. The best
response 1s the action that results in the highest expected
value. The authors tested this method against various other
poker bots. The results show that this model is effective
in countering an opponent’s strategy in as 1little as 200

hands.

B. OTHER RESEARCH

As poker increases 1in popularity revealing more
complexities, other researchers have joined in with
experiments of their own. The most influential methods for

the research described in this thesis follow.

1. Carnegie-Mellon University Method

In [13]1,[14],[15], Gilpin and Sandholm describe a
method of calculating the game theory equilibrium and then
use Bayes rule for predicting the hole cards of an opponent.
Offline, they compute optimal strategies for playing the
pre-flop and flop rounds. They first use automated
abstraction techniques to condense the complexities of the
game. Then, they perform equilibrium computations using
linear programming to calculate the expected value of future
stochastic events (cards dealt in the upcoming turn and
river rounds) without regards to future bets. During the
turn and river rounds, the authors apply Bayes’ rule to

calculate the probability of all possible hole cards based
15



on the computed strategies and the observed actions in the
prior rounds. This method is computationally expensive but
accounts for game context more than many other methods
described in this thesis. However, the authors do not use
any information from previous hands to influence action of
the bot. Although their poker bot did win small amounts of
money 1in their early experiments, the authors could not show
that their poker player preformed better than the expected
variance of Texas Hold’em [13]. Later results in [14],[15]
show that their improvements produced a statistically

significant win rate.

2. Bayesian Networks

There have been several researchers who conducted
experiments using Bayesian networks in [16],[17],[18],[19].
Although Korb, et al, and Boulton [17], [18] describe
research conducted using another form of poker (Five Card
Stud), it 1is wuseful to discuss their wuse of Bayesian
networks which is the basis for later models that Carlton

describes in [19].

In [20], Russell and Novrig describe a Bayesian network
as a directed acyclical graph in which each node represents
a random variable and each arc represents influence of one
node on another node. Conditional probability tables are

used to quantify the effect that parent nodes have on the

child. The biggest drawback of using Bayesian networks for
modeling opponents is the need of these defined
dependencies. The authors of [16] use dependencies among

such game attributes as position, action, pot odd, hand
strength, etc. However, not every poker player uses the

same variables nor is everybody’s dependencies the same as
16



the authors’. This is evidenced by fact that the Bayesian
networks shown in [17],[18],[19] use different nodes and

arcs 1in their models.

In [19], Carlton creates a generic opponent model by
using self-play to initialize the conditional probability
tables. This bootstraps the Bayesian network in order to be
more effective at the start of play against an unknown
opponent. Then, a generic opponent model 1is created by
editing the conditional probability tables according to the

actions of a specific opponent during game play.

The authors of these papers show little accuracy in
their results. Carlton showed the best results in [19], but
was still not able to beat human opponents or the state-of-
the-art poker Dbots. These authors suggest that a more
complex Bayesian network or a dynamic Bayesian network may
yield better results. Dynamic Bayesian networks allow the
relationships Dbetween the nodes to change at different
stages of the game, but the dependencies still need to be

defined.

C. RESEARCH CONDUCTED IN THIS THESIS

1. The Use of Game Context

Most of the methods described above made little use of
the context of the game. In poker, this would be the
community cards and the actions taken given these community
cards. Additionally, the cards revealed at showdown can be
rolled back to give insight into the decision made earlier

in the hand.
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The methods that do use game context use Bayesian
Networks where the variables and dependencies are hard-
coded. This, as discussed above, does not work well against
opponents who do not use the same variables and

dependencies.

2. Hidden Markov Models

Hidden Markov Models (HMMs) have an advantage over the
methods describe above. Using HMMs, one can take into
account the entire context of the game without defining the
variables and dependencies that an opponent might use to
make decisions. The hidden states in the HMM can represent
the variables and dependencies used by an opponent to make
his decisions. Furthermore, training the HMM for different
opponents over different sequences of actions during the
hands of a game allow the HMM to accurately represent

different opponents.
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III.DATA GATHERING AND DESIGN OF EXPERIMENTS

A. DATA GATHERING

1. University of Alberta’s Corpus

The University of Alberta collected data from IRC-based
poker rooms for years. This data is available online [21].
This corpus 1is used for much of the research conducted by
the University of Alberta and other scientists. The corpus
consists of a separate folder for each month of play.
Within each month folder there is a hand database file, a

hand roster file, and a player database folder.

The hand database file 1lists, from 1left to right, a
timestamp for the hand, the position of the dealer, the hand
number, the number of players dealt in the hand, the number
of players, the amount of money in the pot at the flop,
turn, river, and showdown, and the community cards that were

dealt (See Figure 1).

797211363 1 197 7 3/95 3/125  3/185 1/205 2¢ 9z Jo 94 Je

797211456 1 198 9 2745 0/0 0/ 0 1/55 Jd Q= 8s

797211529 1 189 9 3765 2/85 0/0 1/105 Qh 2o Sc 63

797211616 1 200 8 4/80 3/140  3/200 2/280 Ts 4d 4o Tz Jo

797211721 1 201 8 4/80 4/120  2/160 2/200 74 6h 5d 9¢ Te
Figure 1. Example hand database information.

The hand roster, shown in Figure 2, consists of the
timestamp for each hand, the number of players dealt in that

hand and the user name of each player dealt in that hand.
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797210868 9 Ouick Winner7?77 derek greg gunner Jjims johnr sagerbot shinner
7972109458 & Winner777 derek greg gunhner jims Johnr sagerbot shinner
797211062 8 Winher7?77 deadhead derek greg gunner Jjims sagerbot shinner
797211160 7 deadhead derek greg gunner jims sagerbot shinner
797211251 7 deadhead derek greg gunner Jjims sagerbot shinner
797211363 7 deadhead derek greg jims k*man sagerbot shinner

Figure 2. Example hand roster information.

The player database folder contains a separate file for
each player who played at least one hand during that month.
These files list the following information for each hand in

which the player participated (See Figure 3): their name,

the timestamp of the hand, the number of players dealt in

that hand, their position relative to the “dealer” position,

their actions, the amount of money they had at the beginning

of the hand, the amount they contributed to the pot, the

amount they won from the pot, if any, and their hole cards,

if they were involved in a showdown.

sagerbot 737210868 9 1 Bk b b kc 1740 &0 0 od Jc
sagerbot 727210%48 & 1 Bc ki = = 1680 20 0
sagerbot 797211231 7 7 ¢ r b b 1660 B0 205 %3 8s
sagerbot 797211721 8 Z Boc c b b 1785 70 200 8h Ah
sagerbot 737211886 & 8 c C f = 1510 30 0
sagerbot 727212372 & Z Br b b = 13880 &0 140
sagerbot 797213334 10 2 Bk b = = 1330 20 55
sagerbot 737213356 10 1 Bc br br b 1525 130 330 Jd 7d
Figure 3. Example player database information.
All information needed for research was

ascertained using the above files.

In addition to the corpus of data,

Alberta provides basic,

poker related code

java source code files for a card,

hand evaluator.

represent

important

The

concepts
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evaluator assigns an 1integer to every possible five-card
hand such that a higher hand will be assigned a larger
integer and two equal hands will be assigned the same
integer. This class returns the integer representing the
strength of the hand for any input of cards numbering

between three and seven.

2. Creating Hand Histories from Corpus

Perl code was used to create hand histories for players
with the most hands, which 1is based on the size of the
player’s file in the player database. Chosen at random,
data from May, 1995 was used in these experiments. The hand
histories are files that contain all the information about
the actions of all the players in each hand in which the
target player participated. This data was mined from all

the other player database files in the given month.

3. Composition of the Action Vector

For this research, an action vector was created for
each action performed by the target player (See Figure 4).
The action (ACT) was limited to raise, call, or fold, based
on arguments described in the explanation of poker in
Chapter I. The following information about the board cards
was used: board score (BS), probability of a straight draw
(PSD), the probability of a flush draw (PFD), the
probability of a straight (PS), the probability of a flush
(PF), and the Boolean concerning if the board contains a
face card (FC). This data is set at zero for all actions
that occur pre-flop. The board score is an integer returned
from the University of Alberta’s hand evaluator class that

represents the strength of the board cards alone.
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When a poker player has a potential to make a good hand
but needs another card, the player is said to be on a
“draw,” (e.g. four cards of the same suit is called a flush
draw) . Flushes, straights, and draws to straights and
flushes were modeled using probabilities. To obtain a
probability of having a flush or a straight, every possible
two-card combination of the remaining cards that when added
to the current board cards makes a straight or a flush is
divided by the number of all possible two card combinations
to obtain a probability. A similar method is used to
determine the probability of a draw, except a third card is

added to represent the next board card to be dealt.

In addition to the board information, the following
information is tracked for every action: the number of
players still in the hand who act before the target player
(PA), the number of people who act after the target player
(PB), the number of bets-to-call (BTC), the pot odds (PO),
and the amount of money the player has when he performs each
action (POT). “Pot odds” 1s a term that represents a
player’s reward-to-risk ratio and is the quotient of the
amount of money already in the pot and the amount to call

the current bet.

The final information in the action vector is only
available when the target player reveals their cards at a
showdown. These showdown cards are used for all actions
that the player conducted in that hand to determine the
strength of the players hand relative to all possibilities
(HS) . For pre-flop strength, a lookup table was used that
contains probabilities of having the best two-card hand.

This probability is based on research by Sklansky [23], a
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professional poker player, and Billings [6]. After the
flop, the hand evaluator class discussed above is used along
with the method similar to the one used to determine the
possibility of a straight or flush. Every possible two-card
combination 1is added to the board cards. The number of
combinations that return a higher integer than the player’s
hand is divided by the total possible combinations to obtain
a number between one and zero. This number 1is wused to

represent the strength of the player’s hand.

E3 P3D PFD P3 PF Pi PE ETC PO H3 POT FC ALCT
u] o.o o.o 0.0 o.o 1 a 1 o.o 0.s850 1740 F E
1995 0.0683 0.05%5 0.0 o.o u} 1 ] o.o 0.3501 1740 T E
25880 0.74587 0.0953 0.2836 0.0 u} 1 u] o.o 0.9391 1730 F =
F379TE 0.7752 0.1017 0.25960 0.0 a 1 a o.a 0.9391 1720 T F
3379V 0,782 0.1017 0.2960 0.0 1 u} 1 0.1l666 0.9391 1720 F E.
u] o.o o.o o.o o.o 4 1 2 0.1538 0.0 1680 F &
2135 0.0683 0.0395 0.0 o.o u} Z ] o.o o.o 1a60 T F
2135 0.0683 0.0895 0.0 o.o 2 a 1 0.1 o.o 1660 T F
] o.o o.o o.0 o.o 1 Z Z 0.307v6 0.0 1660 F E
u] 0.0 0.0 0.0 0.0 1 1 1 0.2857 0.0 1660 F =
Figure 4. Example action vectors
4. Data Mining Hand Histories for Information

Java code was written to step through the hand
histories to make the action vectors described above. All
the vectors for a given hand are stored in one file. These

files are labeled with a number and the strength of the hand

at the river. The strength of hand is defined as high,
medium, low, and folds. Folds are hands that were folded
and the hole cards remain unknown. For the remaining

categories, the hand strength, as described in the previous
section, 1s used. High is defined as 0.70 and higher.
Medium is defined as greater than or equal to 0.40, but less

than 0.70. Any hand lower than 0.40 is defined as low. An
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additional file containing every vector 1is created and is
used to determine clusters of hands for use in the following

experiments.

B. DESIGN OF EXPERIMENTS

1. Hidden Markov Models

A Hidden Markov Model (HMM) is a statistical model used
to describe the state of a changing environment [20]. The
states represent different values of discrete random
variables over time. If one assumes a Markov process, a
process 1in which the current state only depends on the
previous state and not earlier statesl, an HMM is wuseful
when there is noise or uncertainty in the environment. In
an HMM, the states are hidden or unknown but determine the

observable evidence emitted by the model.
a. Structure of the HMM

An HMM consists of a set of states, a start
distribution, a transition matrix, and an observation
matrix. The states are used to represent the hidden (or
unknown) variables in a random ©process. The start
distribution shows the probability of beginning in each
state. The transition matrix contains the probability of
moving from one state to any other state in the model. An
HMM may allow only one path through the model, a linear
model with no jump-ahead, or it may be possible to go from

any state to any other state, an ergodic model, or some

1 This describes a first order Markov process, in a second order
Markov process, the current state only depends on the previous two
states, and likewise for third and fourth order processes.
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variation in between these two models. The observation
matrix describes the probability of seeing a given

observation in a particular state.

There are three tasks normally associated with an

HMM:

] Evaluation: given the parameters of the model,
compute the ©probability of a given observed
sequence using the forward-backward algorithm.

° Decoding: given the parameters of the model,
compute the sequence of states that most likely
generated the observed sequence using the Viterbi
algorithm.

. Learning: given an observed sequence or set of
sequences, calculate the model that best explains
the observation sequences using the Baum-Welch
algorithm.

b. Training and Testing

For the purposes of the experiments in this
thesis, it 1is not necessary to compute the sequence of
states that generate the observations. In abstract terms,
the states of the HMM are supposed to model what the player
believes about the strength of his hand. The observations
are his actions (raise, call or fold) and the game context
at the time of his actions. The Baum-Welch algorithm is
used to train the HMMs used in these experiments. Once the
HMMs are trained, the forward-backward algorithm is used to
determine which HMM was mostly likely to produce a given

sequence.
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2. Using Hidden Markov Models

Experiments with HMMs were conducted in Matlab. For k-
means clustering, fast k-means code for Matlab was used
[24] . HMM Toolbox for Matlab is used for all of the HMM

operations [25].

a. Vector Quantization of Game Context

K-means is an algorithm for grouping large amounts
of data into k different groups. The objective is to
minimize the total distance from every data point to one of
the centroids. To accomplish this task, k centroids are
chosen throughout the space at random. Then, each data
point 1is assigned to the closest centroid, creating k
clusters of data. Next, ignoring the current centroids,
centroids for the k groups are re-calculated and placed at
the center of each of the k clusters. Again, each data
point is assigned to the closest centroid. The algorithm
repeats a given number of times or until the distance
between successive centroids is below some minimum
threshold. Fach of the k centroids i1is labeled with an
integer, 1 through k. The algorithm returns the integer, k
representing the centroid closest to each of the data

points.

For these experiments, k-means was used to reduce
the number of different sequences used to train the HMMs.
This 1is similar to assuming that hands would Dbe played
similarly during similar situation in a poker game. The
following numbers of centroids were used in the experiments
in this thesis: 50, 75, 100, 175, 250, and 500. Two

dimensions of the action vector are eliminated before the
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clustering process: 1) the Boolean variable for face card
present (FC), and 2) the action (ACT) - raise, call, or
fold. The k-means algorithm returns the 11 dimension
cluster centroids and an integer (1 through k) representing
that centroid. For simplicity, the integer representing the
centroid is used in the experiments instead of the vector.
In order to retain the information for FC and ACT that was
not used in clustering, digits are appended to the end of
the integer representing the cluster center. First, one
digit is appended to represent FC - a “0” for false and a
“1” for true. Finally, the second digit appended represents
the action - the label “0” means fold, “1” stands for call,
and “2” represents raise. At this point, each action vector
is represented by one integer. For example, the experiments
with 50 centroids uses integers ranging from 100 to 5013;
for experiments with 250 centroids, these integers range

from 100 to 25013.

b. Representing a Hand for Training and Testing
HMMs

In order to train the HMM, the input training
sequences must contain all the actions of one hand on a
single 1line. Furthermore, each hand must be o0of equal
length; therefore, each hand is padded with integers to
ensure that each sequence is of equal length. Since =zero
cannot be used as an input, an integer higher than any
possible wvalue of an action vector is used - 5014 for the
50-centriod experiment and 25014 for the 250-centroid
experiments are examples. Any hand in which the player’s
first action was a fold was not wused for training or

testing. Figure 5 shows ten example hands from the 100-
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centroid HMM. Notice that all hands end with several
instances of padded integer - 10014 in this case. In the
first hand in Figure 5, the first action vector is
represented by 2601. 26 is the 1label of the wvector
quantized game context, the value of the Boolean FC is 0 and
the action (ACT) is a call, represented by a 1. The second
action of the hand is represented by the 2612: 26 for the
game context, 1 for the presence of a face card, and 2 for

the action of a raise.

2601 26l2 8412 4611 4611 10014 10014 10014 10014 10014 10014 10014
2601 8202 B8zZ02 8Z02Z 8211 8211 10014 10014 10014 10014 10014 10014
2602 2601 8202 8202 6§20z 10014 10014 10014 10014 10014 10014 10014
9802 9601 9601 3701 8711 10014 10014 10014 10014 10014 10014 10014
9501 /12 95611 4111 4111 89212 10014 10014 10014 10014 10014 10014
9502 %&01 3701 5%01 10014 10014 10014 10014 10014 10014 10014 10014
2601 2612 ZA11 85111 5111 5211 10014 10014 10014 10014 10014 10014
2601 2611 5411 8§11 10014 10014 10014 10014 10014 10014 10014 10014
4801 4812 9312 9912 10014 10014 10014 10014 10014 10014 10014 10014
2602 2601 3812 3§11 412 10014 10014 10014 10014 10014 10014 10014

Figure 5. Example training and testing data.

c. Experiments with Four HMMs

The first experiment is to determine if HMMs are
capable of categorizing a hand as a high, medium, low, or
fold hand. To accomplish this, eight files are created for
the player, two for each category of hands: high, medium,
low, and fold hands. Eighty percent of the hands are placed
in training files and twenty percent are placed in testing
files. The HMMs used during these experiments have either
four or eight states. The models wused were ergodic;
transitions are allowed from every state to any other state.

Four HMMs were trained, one corresponding to each category
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of hand (high, med, low, and fold) using the files
containing eighty percent of the hands. The held-out twenty
percent are then used to test this process. For observation
sequences, the first action of a hand is used, then the
first two actions are used, and so on, until the entire hand
is used for a sequence. At each point, the forward-backward
algorithm was used for each of the four HMMs in order to
determine which HMM was mostly 1likely to produce the

sequence so far.

d. Experiments with Three HMMs

A second set of experiments was conducted
similarly to the method above. The only difference was that
no fold data was used. Therefore, only three HMMs were
trained. The HMMs were used to attempt to determine a high,

medium, or low hand.

e. Experiments with Two HMMs

In the third set of experiments, a different
method was used. Instead of one HMM per category, only two
HMMs were used for each experiment. These experiments
attempt to classify hands as fold or not-fold, high or not-
high, medium or not-medium, and low or not-low. As an
example, in the fold or not-fold experiment, all of the
high, medium, and low data was put into one file and used to
train one HMM instead of three different HMMs, mutatis
mutandis for high, medium, and low experiments. Again, the
data was separated into eighty percent training data and

twenty percent held-out testing data. Again, the forward-
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backward algorithm is used on each sequence of the testing
data to determine which of the two HMMs most likely produced

the sequence.
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IV. RESULTS AND ANALYSIS

A. RESULTS AND ANALYSIS

Accuracy, precision, recall, F-score and baseline F-
score were all used to evaluate the performance of the HMMs.
Accuracy 1is the number of predictions correct divided by the
total number of predictions. Precision is the proportion of
the predictions of X that were correctly labeled—X being the
possible categories of high, medium, low, or fold hands.
Recall measures the proportion of X’s in the corpus that
were correctly labeled X. The F-score is the harmonic mean
of recall and precision given by the following formula,
where F is the F-score, P is the precision, and R 1is the

recall:

The F-score is used to Dbalance the recall and
precision. In order to attain a high F-score, both the
recall and precision must be high; therefore, one cannot
improve one measure at the expense of the other measure.
The baseline F-score is calculated using the F-score formula
as if every prediction was X. Therefore, the recall will
always equal one and the precision will be proportional to
the frequency of X. This is used too measure whether or not
the performance of the HMM 1is better than chance. The
baseline F-score 1is referred to as baseline for the

remainder of this thesis. If the F-score is higher than the
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baseline, the HMM can predict Dbetter than chance and
assuredly the data contains information that can be used for

prediction.

The highest accuracy of the HMMs in this thesis was
around 85%; however, most HMMs only attained 60% accuracy.
Although the accuracy is not consistently high, many scores
were significantly above the baseline score. Additionally,
a high precision when predicting fold hands and high hands -
especially in hands with many actions - was achieved in the
experiments. The following paragraphs provide highlights of
the results, with the full results given in Appendix A.

1. Experiments with Four HMMs

The HMM with eight states that wused 100 centroids
performed the Dbest. The tables in Section 1 display the
results of this HMM. As stated in the experimental design,
the HMM made a prediction based on the first action in a
hand, then the first two actions in a hand, then the first
three actions in a hand, and so on, until the end of the
hand. The results for all predictions are given in Table 1.
Although the accuracy is around 50%, the scores are

significantly above Dbaseline for all categories except

folds.
Adl Actions - 1880 Predictions

Accuracy: 06122
Fold Lo hed Hirgh
Recall 0.55 41 02105 | 03368 [ 046392
Frecigion| 07657 | 014971 01626 | 06207
F-score | OR496 | 01745 | 02192 | 0&6293
Baseline | 07110 | 01143 | 01862 | 04437
+Baseline] 0% +53% +18% +19%

Table 1. Results for 8-state, 100-centroid four HMM

experiment for all predictions.
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It should be expected that with more information
available, the HMM would perform better. In order to test
this hypothesis, the performance at certain points in each
hand is analyzed. The prediction based on the first action
in a hand can be expected to be low, as there is very little
information. However, the accuracy of the first prediction

is 55% (See Table 2), which 1is Dbetter than the overall

accuracy. The HMM never makes a “low” prediction based on
the first action. This is not out of the ordinary, as low
hands can easily be confused with fold hands. In fact, of

the 27 low hands, 24 were predicted as fold hands based only

on the first action.

First Action - 500 Predictions

Accuracy: 0.6520
Fold Lo hed Hirgh
Recall 0.7231 0.0000 0.2500 028385

Frecizsion| 0.7015 0.0000 0.1358 0.3571
F-gcore | 07121 0.0000 01760 03192
Baseline | 07879 01025 016518 03444
tBaselinel -10% -100% +3% -7 %

Table 2. Results for 8-state, 100-centroid four HMM
experiment for the first prediction in each hand.

As play continues in a hand, a player will have more
actions to use in order to Jjudge the strength of an
opponent’s hand. We hypothesized that using the first three
actions of a hand to make a prediction should improve the
performance of the HMM. However, Table 3 shows that the
accuracy drops considerably. The performance on fold hands
is extremely low and many medium hands are mistakenly
labeled as high hands. Note that if the opponent does not
perform three actions in the hand, the hand is not included

in this table. The third action of a hand is likely to be
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just after the flop where the strength of a hand changes
considerably. This may explain why the performance drops at

this point in the hand.

Third Action - 284 Predictions

A ccuracy: 03908
Fold Low hed Hiah
Recall 0.1455 0.4074 03721 0.F539

Precision| 0.5333 0.2200 0.1861 05753
F-score | 02286 0.2857 0.2481 0.6126
Baseline | 0.5584 01736 0.2530 0.5351
tBaselineg] -599% H55 % -5 % +14 %

Table 3. Results for 8-state, 100-centroid four HMM
experiment for the first three actions.

The sixth action will typically be well after the flop
when hand strength is relatively stable. Accordingly, the
performance of the HMM increases significantly over the
performance based on the first three actions, (See Table 4).
Again, if the hand does not contain six actions, the
performance of the hand is not included in this table. Note
that the precision of folds is approaching 90% while the
precision of high hand is almost 85% at this point. This
tells a player that if the HMM predicts a fold, it is 90%
sure the opponent will fold, and if the HMM predicts high,
it is 85% sure the opponent has a high hand. Being able to
distinguish between high and fold at this stage in the hand
is very important because there is likely to a large pot at
stake. Making this distinction can earn a good deal of
money or prevent the loss of more money. Furthermore, all
of the medium hands that are mislabeled are called high
hands and most of the mislabeled high hands are called
medium hands. This indicates the predictions are close and
perhaps changing the threshold between medium and high hands

may improve the performance significantly.
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Gth Action - 53 Predictions

Accuracy 06033
Fold Low hed Hiah
Recall 0.6EG7 0.0000 0.4000 0.5471
Precision| 0.8389 0.0000 0.1333 0.8452
F-score | 07619 0.0000 0.2000 0.7333
Baseline | 0.3592 00727 01724 0.7816
tBaseline] +106% -100% +16 % -5 %

Table 4. Results for 8-state, 100-centroid four HMM
experiment for the first six actions.

Although there are only six hands that contain eight or
more actions, Table 5 shows that a high precision 1is

attainable in the fold and high categories.

gth Action - B Predictions

Accuracy 0.3333
Fald Low hded Hiah
Fecall 1.0000 0.0000 0.0000 0.2000
Precision| 1.0000 0.0000 0.0000 1.0000
F-gcore | 1.0000 0.0000 0.0000 0.3333
Baseline | 0.2857 2.0000 2.0000 0.9091
+Haseline] +260% -100% -100 % 5.3 %

Table 5. Results for the 8-state, 100-centroid four HMM
experiment for the first eight actions.

Table 6 shows the results of only the last prediction

of each hand. The last prediction of each hand uses all the
actions in that hand -- be it two actions or eight actions -
- to make a prediction. This table shows the highest

accuracy for this HMM and a very high precision on fold
hands. This is somewhat misleading because the fold action
is part of the action vector and is always the last action
in a fold hand. The fact that the F-score is not higher
shows that the actions preceding the fold mathematically

outweigh the fold action in many of the hands.
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Last Action - 500 Predictions
A ccuracy: 06400
Fold Low hed Hiah
Recall 07108 0.3333 0.3536 05154
Precision| 0.9352 0.3913 0.2000 04267
F-score | 08077 0.3600 0.2581 0.5039
Baseline | 0.7879 01025 01618 03444
tBaseline]  +39% +51% Hil % +d5 %

Table 6. Results for 8-state, 100-centroid four HMM
experiment for the last prediction.

For these experiments, accuracy between 55% and 60% is
common, with the accuracy generally increasing as the number
of actions in the hand increases. Additionally, as the
number of actions increases, the precision of the fold hands

and high hands increases.

2. Experiments with Three HMMs

The HMM with four states and 50 centroids performed
reasonable well and was consistently between 51% and 55% on
accuracy. However, the results for the HMM with eight
states and 100 centroids preformed the better in key areas

described below.

Similar to the previous experiments, this method
achieved an accuracy of 53% on all predictions. Low
performs 19% better than the baseline score. Most of the
mistakes in the high and medium categories are in the
opposite category, again showing that a change in the
threshold between these two categories may cause significant

improvements. These results are shown in Table 7.
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All Actions - 843 Predictions

A ccuracy: 06255
Liow hed High
Recall 0.2807 0.3334 05287
Precision| 0.2883 027 31 0.7310
F-score | 02544 0.3180 0.657E0
Baseline | 0.2382 03726 07774
tBaseling] +19% -14 % -13%

Table 7. Results of 8-state, 100-centroid three HMM
experiment for all predictions.

This time, as should be expected, the prediction based
on only the first action is worse than the overall accuracy,
(See Table 8. Similarly to the first action in the four HMM
experiment, this model does not predict a low hand based on

the first action.

First Action - 175 Predictions
Accuracy: 04743
Liowy hed High

Recall 0.0000 03636 05442
Precision| 0.0000 0.2388 0.5204
F-score | 0.0000 0.2853 0.6321
Baseline | 0.2673 0.4018 0.7455
tBaseling] -100% -28 % -15%

Table 8. Results of 8-state, 100-centroid three HMM
experiment for the first prediction.

The performance based on the first three actions is
considerably higher—exceeding 58% (see Table 9).
Furthermore, the recall and precision scores are higher in
all categories here than those recorded in the four HMM

experiment.
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Third Action - 175 Predictions
A ccuracy: 05305
Liow hed High
Recall 0.4444 03954 05923
Precision| 0.5217 03269 0.7273
F-zcore | 0.4800 0.3579 0.7094
Baseline | 0.2687 03963 0.7482
+BEaseling] +79% -10% -0%

Table 9. Results of 8-state, 100-centroid three HMM
experiment for the third prediction.

The performance of the last prediction is right at the
average for the three HMM experiments and performed much
worse than the four HMM experiments (See Table 10). This is
likely due to the fold data that is inherent in the last

action of a fold hand, as discussed in the previous section.

Last Action - 175 Predictions
Accuracy: 05086
Liowy hed High
Recall 0.3333 03636 05154
Precision| 0.2547 02909 0.7442
F-score | 0.29571 0.32 32 0.67 37
Baseline | 0.2673 0.4018 0.7455
tBaseling] +10% -20 % -10%

Table 10. Results of 8-state, 100-centroid three HMM
experiment for the last prediction.

Except for predictions based on the first three
actions, this method did not perform better than the four

HMM experiment.
3. Experiments with Two HMMs

Accuracy 1s much improved 1in these experiments -
exceeding 85% in some cases. This shows that given broader

categories, we can improve our performance.
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Similar to the above experiments, 100 centroids result

in the highest accuracy. The accuracy for fold hands is

about 67% based on all actions

(See Table 11).

All Actions - Fold or Mot - 1880 Predictions
Accuracy 0.6718
MNegative Positive
Recall 0.535E5 0.55%95
Precision 06212 07215
F-zcore 06524 0.6R4
Baseline 0.Rr192 07110
+B aselineg +5 % -3 %

Table 11. Results for the 100-centroid fold or not-fold HMM

for predictions based on all actions.

Low hands scored the lowest accuracy on the predictions

based on the first actions and the highest accuracy in the

last predictions. Table 12 shows that the first action is

only able to discriminate low or not-low at a 39% rate. As

expected, this is difficult to determine base solely on the

first action of a hand.

First Action - Low or Not - 500 Predictio ns
AT CUracy 0.2200
Megative Puositive

Fecall 0.3679 0.7778
Frecision 0.5667 0.0656
F-score 0.5329 01210
Baseline 09723 01025
5 azeline =45 % +1 5%

Table 12. Results for the

Low or Not-Low

100-centroid HMM predictions for
based on the first action.

Table 13 shows that as the hand progresses, it becomes

easier distinguish low from not-low. In fact, this is where

the highest accuracy is attained—exceeding 84%.
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Lagt Action - Low or Mot - 500 Predictions
Accuracy 0.5460

MNegative Positive

Recall 0.8710 0.4074

Precision 0.9526 015258

F-zcore 0.9145 022022

Baseline 09723 01025

+B aselineg -5 % +1 17 %

Table 13. Results for 100-centroid HMM for predictions of

Low or Not-Low based on the Last Action.

Interestingly, Tables 14 and 15 show that medium and
high hands are relatively easy to discriminate on the first

action. For medium or not-medium hands, accuracy over 70%

was attained.

First Action - Medium or Mot - 500 Predictions
AT CUracy 0.7040
Megative Puositive
Fecall 0.7259 0.4773
Frecision 0.5350 0.1435
F-score 0.8173 0.2211
Bazeline 0.9540 01615
5 azeline =14 % +37
Table 14. Results for the 100-centroid HMM for predictions

of Medium or Not-Medium based on the First Action.

When discriminating between high and not high, accuracy

over 66% was attainable on the first action.

First Action - High or Mot - 500 Predictions
A curacy 0.6620
Megative Puositive
Recall 0.7095 0.4805
Precigioh 0.8385 0.3030
F-score 0.7683 03718
Baseline 0.8339 03444
+H azeline -13% +5%
Table 15. Results for the 100-centroid HMM for predictions

of High or Not-High based on the First Action.
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Table 16 shows the Dbest accuracy in all of the
experiments described in this thesis. As with the 100-
centroid HMM, the 250-centroid HMM performed best when

determining low or not-low based on the last action of the

hand. The accuracy here was over 85%.
Lagt Action - Low or Mot - 500 Predictions
A curacy 0.8560
Megative Puositive
Fecall 0.8774 0.45315
Precigioh 0.59:74 0. 1831
F-score 0.9202 02653
Baseline 0.9723 0.1025
+H azeline 5% +1 E9%
Table 16. 250-centroid HMM for Low or Not Low predictions

based on the last action.

B. SUMMARY

In general, our experiments were successful in the
following areas. Precision increased significantly as
increasing numbers of actions are made 1in a hand,
specifically in fold and high hands. Most high hands that
were mislabeled were called medium, and vice versa. This
indicates that adjusting the threshold between these hand

categories will improve performance.
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V. CONCLUSIONS AND FUTURE WORK

A. SUMMARY

A new method for adversary modeling was explored in
this thesis. There have been numerous experiments conducted
on adversary modeling in a wide array of domains—to include
poker—but none have used Hidden Markov Models in the manner
described here. This thesis uses Hidden Markov Models to
predict what an opponent thinks about the strength of his
hand. First, data was collected from an online corpus and
mined for the information about the hands of several
individual players. Next, we choose 13 dimensions of the
game of poker of which an opponent could use to judge the
strength of his hand. These game contexts were clustered
together using the k-means algorithm and then used to train
Hidden Markov Models. Several models were used to determine
the most likely model to produce a given sequence of a hand,
i.e., predict the strength of the hand. Finally, precision,
recall, and F-scores were used to evaluate the performance
of the models. The methods in this thesis did not produce
accuracy above 85% and was usually lower than 60%; however,
most results were above the baseline, which means the
predictions were better than random. Furthermore, late in
hands the HMMs were able to make clear distinctions between
fold hands and high hands—a distinction that will earn a

large amount of money in the long run.

43



B. FUTURE WORK

1. Adjusting Hand Strength Thresholds for Hand
Categories.

In addition to the work described above, other
experiments were conducted using different thresholds for
high, medium, and low hands. Additionally, more hands were
used in the experiments, resulting in more hands with up to
eight actions. In one set of experiments, the threshold for
high hands was raised to 0.90 and the threshold for medium
hands was raised to 0.70. In another set of experiments,
the threshold for high was set to 0.85 and the threshold for
medium hands was set to 0.65. In these experiments, there
were at least 26 hands of at least eight actions; as opposed
to the six hands with at least eight actions described in
Chapter IV. Additionally, the distributions of hands in the

high, medium, and low categories were evenly distributed in

these new experiments. The predictions based on the first
eight actions produced many high scores. All predictions
were well above baseline. For fold hands, the F-score was
94%, with a recall of 100% and a precision of 89%. The

precision from high hands was also 100% and the overall
accuracy score was 69%. This indicates that adjusting the
thresholds further could result in even better performances.
Unfortunately, different thresholds might produce different
results for each opponent - negating one of the greatest

benefits of using HMMs.

2. Modeling Advanced Play in Poker
Misinformation is inherent in the game of poker. Many
advanced players will “slow-play” some hands - the technique
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of playing a very strong hand weakly in order to extract
more money from your opponent. The opposite of slow-playing
is bluffing - playing a weak hand as if it were very strong
in hopes of making your opponent fold. Another advanced
technique is drawing to a strong hand - where a player who
does not currently have a strong hand but can call or raise
because of a high likelihood of getting a strong hand with

future board cards.

Modeling these types of hands is extremely difficult.
Some of the bluff and draw hands could end up in the fold
category - if the opponent re-raises and then the bluffer
fold, or if the drawing hand does not catch the draw and
folds. Despite the difficulties, some data mining
techniques could be used to classify hands 1into these
categories. Then, these hands could be used to train and
test more HMMs. Future experiments would involve high,
medium, low, bluff, slow-play, draw, and fold hand

categories with a corresponding HMM for each category.

3. Principle Components Analysis

In these experiments, the integer 1labels for the
centroids were used instead of the centroids themselves. If
the data point of the centroid contains valuable
information, using the point instead of label for the point
may improve the performance. Principle Components Analysis
(PCA) is a technique used to analyze multidimensional data.
PCA uses linear combinations of the original dimensions to
convert the data into a coordinate system. The dimension
with the greatest variance is the first coordinate and is
called the first principle component, the dimension with the

second greatest wvariance 1is the second coordinate and is
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called the second principle component, an so on. PCA can
also be used to reduce the number of dimensions by ignoring
the dimensions with less variance. Performing PCA on the

data could improve the results.

4, Dimension of Game Context

Using PCA could also provide insight that can be used
to choose other dimensions that can be used. For example,
the Boolean used in this thesis tracks whether or not there
is a face card on the board. A Boolean for tracking the
presence of an Ace and another that tracks the presence of a
King could prove to be more useful. Also, a different
technique for analyzing the board cards could be used. The
board strength, probability of straight, probability of
flush, probability of straight draw and probability of a
flush draw dimensions used in this thesis could oversimplify

the threats that a board presents to players.

C. CONCLUSIONS

Modeling modern adversaries is difficult because of the
many, differing complexities on small terrorist groups. In
order to be effective, one common system for modeling every
group 1s necessary. This thesis attempts to create an
adversary modeling system that is useful in the domain of
Texas Hold’em Poker because of its structure, rules, and
parallel with wartime adversarial situations. The results
show that although the accuracy is not sufficient to return
to the more complex domain of warfare, the Hidden Markov
Models do perform significantly better than random guessing.
With more modifications, the accuracy should improve enough

to conduct experiments with terrorist models.
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APPENDIX: RESULTS OF HMM EXPERIMENTS

A. EXPERIMENTS WITH FOUR HMMS

The first table applies to all of the other tables in
Section A. It shows the number of predictions made for each

group of actions.

Category Mumber of Predictions
All Actions 1880

First Action 00

3rd Action 284

ath Action 113

Gth Action a3

7th Action 14

Ath Action 5

Last Action b ]

Table 17. Number of Predictions in each Action Category.
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All Actions

First Action

Accuracy: 0.3851

Accuracy: 01500

Fald

L o

hed

High

Fold

Lo

hed

High

Recall

0.27g7d

0.2544

0.2280

06754

Recall

0.0oo0

0| 0.0000

0.2500

0.8077

Precisian

0.8705

0.1160

0. 1467

0.3627

Precisian

0.000

0 | 0.0000

0.13592

0.1995

F-score

042222

0.1593

0.1785

0.4720

F-score

0.000

0| 0.0000

0.175859

0.3200

Baseline

o.7110

0.1143

0.1862

0.4437

B aseline

0.757

2101025

0.1618

0.3444

+Haseline

-41%

+39%

-4 %

+5%

+Haseline

-100%

-100%

+11%

-7

3rd Action

Sth Action

Scocuracy

0.3768

A cocuracy:

0.531

a

Fold

L owi

hed

High

Fald

L o

hed

High

Recall

0.1513

02963

0.1395

070158

Recall

0.562

5 | 0.2500

02857

0.5573

Precision

0.5552

0.1194

01225

0.5445

Precision

0.500

o 0.0417

0. 1667

0.5222

F-ccore

0.2773

01702

0.1304

05135

F-ccore

0.B9:

a3 0.0714

0.2105

0.6352

Baseline

0.5554

0.1736

0.2630

0.53K1

B aseline

0.441

4 | 0.0654

02205

07158

tBaseline

-50%

-2 %

-50%

+14%

tEaseline

+57 %

+4%

-5%

4%

Bth Action

Jth Action

Scocuracy

0.5660

A cocuracy:

0.444

4

Fald

L ow

hed

High

Fald

Lo

hed

High

Fecall

0.BBEY

0.5000

0.4000

0.5585

Fecall

0.7a0

0 | 0.0000

0.0000

0.3571

Precision

0.8000

0.0903

01667

0.9500

Precision

1.000

0| 0.0000

0.0000

1.0000

F-score

.72y

3| 0.1535

0.2353

07037

F-score

0.857

1] 0.0000

0.0000

0.52k3

Bazeline

0.365

2| 0.0727

01724

0.7816

Bazeline

0.363

& | 2.0000

2.0000

0.8750

tBaseline

+97 %

+112%

+35 %

-10%

tEaseline

+136%

-100%

- 100 %

-40%

Bth Action

Last Action

Acocuracy

0.BGE

7

A ccuracy:

0.608

0

Fald

L ow

hed

High

Fald

Lo

hed

High

Recall

1.000

0| 0.0000

0.0000

0.6000

Recall

0.646

21 0.3704

0.31582

06731

Frecision

1.000

0| 0.0000

0.0000

1.0000

Frecision

0.976

S 02705

02253

0.3763

F-score

1.000

0| 0.0000

0.0000

0.7 500

F-score

0.777

803125

02642

0.4525

Baseline

0.285

7 | 2.0000

2.0000

0.9051

B aseline

0.757

2101025

0.1618

0.3444

Table 18.

Results for the

50-centroid,

48

4-state HMMs.




All Actiong

First Action

LA ccuracy: 0.3596

A couracy s 01720

Fald

L o

hled

High

Fald

Lo

hed

High

Recall

0.2604

0.5790

0.2902

0.5299

Recall

0.085

107407

0.2500

0.2B9

Precision

0.909

1]0.1038

0.1515

0.4914

Precision

0.675

0| 0.0654

01352

0.3733

F-score

0.40 43

01760

0.1993

0.5059

F-score

0.148

O] 01201

0.17359

03128

Baseline

0./110

0.1143

0.1362

0.4437

Baseline

0.787

o 01025

0.1618

0.3444

tBaseline

-43%

+54%

+7 %

+15%

tBEas eline

-51%

+17 %

+11%

2%

3rd Action

Sth Action

LA couracy:

0.35586

A couracy

0.435

B

Fald

L o

hled

High

Fald

L o

hed

High

Recall

0.05 46

0.6256

0.3256

0.6154

Recall

0.500

0| 0.0000

03571

0.5556

Pracisian

0.857

1101809

01867

0.5926

Precisian

1.000

0 | 0.0000

0.1423

0.7778

F-score

01026

0.2810

0.2373

0.6035

F-score

0.66B

7 | 0.0000

02041

06452

Baseline

0.5554

01736

0.2630

0.53561

Baseline

0.441

<4 | 0.0654

02205

0.7 158

+Baszeline

-52%

+ 2%

-10%

+13%

+Haseline

+51%

-100%

-7 %

0%

Eth Action

7th Action

LA couracy:

0.5660

& couracy

0.333

i

Fold

Lo

hled

High

Fald

Lows

Med

High

Recall

0.5533

1.0000

0.6000

0.5254

Recall

0.750

0| 0.0000

0.0000

0.2143

Precision

1.0000

0.2857

0.1667

0.8571

Precision

1.000

0| 0.0000

0.0000

1.0000

F-score

0./363

0.4444

0.2609

0.654k

F-score

0.857

1] 0.0000

0.0000

0.3524

Baseline

03652

0.0727

0.1724

0.7816

Baseline

0.363

B | 2.0000

2.0000

0.8750

tBaseline

+100 %

+511%

+51 %

-16%

tBEas eline

+136 %4

-100%

- 100 %

-H0%

dth Action

Last Action

LA couracy:

0.BE &7

& couracy

0.5598

]

Fald

L o

hled

High

Fald

L o

hed

High

Recall

1.0000

0.0000

0.0000

0.6000

Reeall

0.bdb

204444

0.3636

0.5865

Precision

1.0000

0.0000

0.0000

1.0000

Precision

0.950

B | 0.3243

0. 1561

0.3657

F-score

1.0000

0.0000

0.0000

0.7500

F-score

0.752

110.3750

02452

0.4535

Baseline

0.2857

2.0000

2.0000

.50

Baseline

0.787

901025

0.1618

0.3444

zBaseline

+200%

-100%

-100%

17 %

tEaseline

-1%

+2B6 %

+od%

+iz%

Table 19.

Results for the 50-centroid,

49

8-state HMMs.




All Actiong

First Action

LA couracy:

0.47 34

A couracy

0.5300

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.5217 | 0.3421

0.3751

0.4440

Recall

0.7477

0.0000

0.4313

0.0284

Precision

0.7807 | 01423

0.1545

0.5313

Precision

0.7023

0.0000

0.1310

0.3333

F-score

0.6254 | 0.2010

0.2185

0.4837

F-score

0.7243

0.0000

0.20Mm

0.0531

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

12% | +7B%

+158%

+9%

tBEas eline

-8%

-100%

+24%

-85%

3rd Action

Sth Action

LA couracy:

0.4014

A couracy

0.4779

Fold L o

hled

High

Fald

L o

hed

High

Recall

0.2000 | 0.45815

0.3256

0.6250

Recall

0.5313

0.0000

02857

0.5235

Pracisian

0.6875 | 0.2000

0.1352

0.5752

Precisian

0. 7747

0.0000

0.153%9

0.7674

F-score

0.3099 | 0.2826

0.2393

0.5551

F-score

0.6296

0.0000

0.2000

0622%

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

-45% | H3%

2%

+12%

+Haseline

+43%

-100%

0%

-13%

Eth Action

7th Action

LA couracy:

0.5472

& couracy

0.3333

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.5533 | 0.0000

0.6000

0.5558

Recall

0.7500

0.0000

0.0000

0.2143

Precision

0.7778 | 0.0000

0.1875

0.8636

Precision

0.7500

0.0000

0.0000

1.0000

F-score

0.66EY | 0.0000

0.2857

0.678k

F-score

0./500

0.0000

0.0000

0.3524

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+81 % | -100%

+5E %

-13%

tBEas eline

+106 %4

-100%

- 100 %

-H0%

dth Action

Last Action

LA couracy:

0.3333

& couracy

0.6120

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.2000

Reeall

0.62300

0.3704

0.3364

0.5577

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

0.9526

0.2541

02024

0.3867

F-score

1.0000 | 0.0000

0.0000

0.3333

F-score

0.7935

0.3279

02656

0.4 567

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

E3%

tEaseline

+%

+220%

+54 %

+33%

Table 20.

Results

for 75-centroid,

50

4-state HMMs.




All Actiong

First Action

LA couracy:

0.35957

A couracy

0.2720

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.3337 | 0.4912

0.3109

0.5261

Recall

0.2585

0592k

0.2500

0.2404

Precision

0.8607 | 01024

0. 1546

0.5153

Precision

0.7775

0.0672

0. 1264

0.3731

F-score

0.4509 | 01654

0.2065

05227

F-score

0.3580

01208

01679

0.2924

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

-32% | HB%

+11%

+18%

tBEas eline

51%

+15%

+i %

-15%

3rd Action

Sth Action

LA couracy:

0.3338

A couracy

0.5044

Fold L o

hled

High

Fald

L o

hed

High

Recall

0.1455 | 0.5185

0.3023

0.6346

Recall

0.5000

0.0000

02857

0.5873

Pracisian

0.6957 | 0.1944

0. 1806

0.5641

Precisian

0.7619

0.0000

0.1667

0.7 708

F-score

02406 | 0.25825

0.2261

0.55973

F-score

0.6035

0.0000

02105

0.66R7

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

57 % | H3%

-14%

+11%

+Haseline

+37 %

-100%

5%

-7 %

Eth Action

7th Action

LA couracy:

0.5660

& couracy

0.5000

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.5533 | 0.0000

0.6000

0.58582

Recall

0.7500

0.0000

0.0000

0.4286

Precision

0.7778 | 0.0000

0.2305

0.8333

Precision

0.7500

0.0000

0.0000

1.0000

F-score

0.66EY | 0.0000

0.3333

0.6897

F-score

0./500

0.0000

0.0000

0.6000

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+81 % | -100%

+53 %

-12%

tBEas eline

+106 %4

-100%

- 100 %

-31%

dth Action

Last Action

LA couracy:

o.5000

& couracy

0.55980

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.4000

Reeall

0.b53

0.3704

0.34039

0.5962

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

0.9507

0.2564

015807

0.4000

F-score

1.0000 | 0.0000

0.0000

0.5714

F-score

0.7737

0.30=0

025362

0.4 755

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

37 %

tEaseline

-2%

+196%

+46%

+39%

Table 21.

Results

for 75-centroid,

51

8-state HMMs.




All Actiong

First Action

LA cocuracy:

0.4165

A couracy

0.3200

Fold L o

hled

High

Fald

L o

hed

High

Recall

0.3992 | 0.35860

0.3752

0.4702

Recall

0.3785

0.3333

0.4318

0.0865

Precision

0.7992 | 01007

0.1584

0.5431

Precision

0.7455

0.0529

013587

0.3214

F-score

0.5325 | 015857

02232

0.5040

F-score

0.5020

0.0914

0.20%9

0.1364

Baseline

0./110]0.1143

0.1362

0.443/7

Basaline

0./8/9

0.1025

0.1618

0.3444

tBaseline

-20% | +40%

+20%

+14%

tBaseline

-36%

-11%

+30%

-50%

3rd Action

Sth Action

A ccuracy:

0.3556

A couracy:

0.5457

Fold L o

hled

High

Fald

L o

ke d

High

Recall

012731 0.4444

0.3256

0.5865

Recall

05625

0.2500

0.42 56

0.5873

Precisian

0.5185 | 0.1600

0.1342

0.5755

Precisian

0./500

0.07E9

0.1936

0.8,

F-score

0.2044 | 0.2353

0.2353

0.55810

F-score

0.6425

01177

02667

06852

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

0.2 05

0.7 158

+Baseline

£3% | +36%

-11%

+3%

+Haseline

+d46 %

+7 2%

+21 %

-4 %

Eth Action

7th Action

LA couracy:

0.B2 26

& couracy

0.5000

Fold Lo

hled

High

Fald

Lo

hed

High

Recall

0.6667 | 0.0000

0.6000

0.6471

Recall

0.7500

0.0000

0.0000

0.4286

Precision

0.5000 | 0.0000

0.2143

0.5800

Precision

0.7500

0.0000

0.0000

1.0000

F-score

0./27/3 | 0.0000

0.3158

0.7458

F-score

0./500

0.0000

0.0000

0.6000

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+97 % | -100%

+83%

-5 %

tBaseline

+106 %a

-100%

- 1000%

-31%

dth Action

Last Action

LA couracy:

o.5000

& couracy

06240

Fold L o

hled

High

Fald

L o

ke d

High

Recall

1.0000 | 0.0000

0.0000

0.4000

Reeall

0.7015

0.2963

0.27 27

06154

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

09265

027558

01622

0.4235

F-score

1.0000 | 0.0000

0.0000

0.5714

F-score

0.7986

0.2857

0.2034

0.5020

Baseline

0.2857 | 2.0000

2.0000

.50

Basaline

0./87/9

0.1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

3%

tBaseline

+1%

+179%

+26%

+4E%

Table 22.

52

Results for 100-centroid,

4-state HMMs.




All Actiong

First Action

LA couracy:

0.5122

A couracy

0.5520

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.5641 | 0.2105

0.33k5

0.5392

Recall

0.7251

0.0000

0.2500

0.2335

Precision

0.7657 | 0.145

01625

0.5207

Precision

0.7015

0.0000

0.1355

0.3571

F-score

06496 | 01746

0.2192

0.5258

F-score

0.7121

0.0000

01760

03152

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

A | +53%

+158%

+19%

tBEas eline

-10%

-100%

+3%

-7 %

3rd Action

Sth Action

LA couracy:

0.3308

A couracy

0.5153

Fold L o

hled

High

Fald

L o

hed

High

Recall

0.1455 | 0.4074

0.3721

0.65359

Recall

0.5313

0.0000

03571

05714

Pracisian

0.5333 | 0.2200

0.1861

0.5763

Precisian

0.7083

0.0000

0.1667

0.7 660

F-score

022586 | 0.2857

0.2481

0.6126

F-score

0.6071

0.0000

02273

06546

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

-09% | HBE%

-5%

+14%

+Haseline

+38%

-100%

+3%

0%

Eth Action

7th Action

LA couracy:

0.60 33

& couracy

0.5556

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.6667 | 0.0000

0.4000

0.6471

Recall

0.7500

0.0000

0.0000

0.5000

Precision

0.8559 | 0.0000

0.1333

0.8462

Precision

0.7500

0.0000

0.0000

1.0000

F-score

0./619 | 0.0000

0.2000

0./333

F-score

0./500

0.0000

0.0000

0.666/7

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+106% | -100%

+16%

-5 %

tBEas eline

+106 %4

-100%

- 100 %

-24%

dth Action

Last Action

LA couracy:

0.3333

& couracy

0.6400

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.2000

Reeall

0.7108

0.3333

0.3636

06154

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

0.9352

0.3913

0.2000

0.4267

F-score

1.0000 | 0.0000

0.0000

0.3333

F-score

0.80v7

0.3600

0.25581

0.5034

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

E3%

tEaseline

+1i%

+251%

+El %

+4E%

Table 23.

53

Results for 100-centroid,

8-state HMMs.




All Actiong

First Action

LA couracy:

0.3503

A couracy

0.2480

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.3317 | 0.3557

04157

0. 464k

Recall

0.2442

0.555k

0.4313

0.0385

Precision

0.81591 | 0.0505

0.1543

0.5166

Precision

0.7714

0.0652

01357

0.3214

F-score

0.47221 01446

0.2256

0.4852

F-score

0.3767

o167

0.20%93

0.1364

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

3% | +26%

+21 %

+10%

tBEas eline

-52%

+14%

+30%

-H0%

3rd Action

Sth Action

LA couracy:

0.3373

A couracy

0. 4650

Fold L o

hled

High

Fald

L o

hed

High

Recall

012731 0.3704

0.4186

0.65359

Recall

0.6250

0.0000

0.2143

0.4762

Pracisian

0.7368 | 0.1639

01978

0.6018

Precisian

0.6061

0.0000

0.1154

0.7143

F-score

02171 02273

0.2687

0.6267

F-score

0.6154

0.0000

01500

05714

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

£1% | +31%

+21%

+17%

+Haseline

+39%,

-100%

-32%

-20%

Eth Action

7th Action

LA couracy:

0.5660

& couracy

0.3333

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.8333 | 0.0000

0.6000

0.5000

Recall

0.7500

0.0000

0.0000

0.2143

Precision

0.6250 | 0.0000

0.2727

0.8947

Precision

0.6000

0.0000

0.0000

1.0000

F-score

0.7143 | 0.0000

0.3750

0.6415

F-score

0.BEE/

0.0000

0.0000

0.3524

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+93 % | -100%

+1158%

-18%

tBEas eline

+33%

-100%

- 100 %

-H0%

dth Action

Last Action

LA couracy:

o.5000

& couracy

0.5580

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.4000

Reeall

0.bSES

0.2963

0.3636

0.5385

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

0.5735

02755

02025

0.35810

F-score

1.0000 | 0.0000

0.0000

0.5714

F-score

0.7509

0.2857

02602

0.4 452

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

37 %

tEaseline

%

+179%

+51%

+3l%

Table 24.

54

Results for 175-centroid,

4-state HMMs.




All Actiong

First Action

LA couracy:

0.40 32

A couracy

0.2660

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.3539 | 0.4474

0.38247

0.5037

Recall

0.2442

0.555k

0.34039

0.2115

Precision

0.79596 | 01014

0.1795

0.5114

Precision

0.7714

0.0652

01515

0.3333

F-score

0.45906 | 01653

0.2401

0.5075

F-score

0.3767

o167

0.20593

0.25585

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

3% | 5%

+29 %

+14%

tBEas eline

-52%

+14%

+30%

-25%

3rd Action

Sth Action

LA couracy:

0.3308

A couracy

0.5044

Fold L o

hled

High

Fald

L o

hed

High

Recall

0.1455 | 045815

0.35954

0.6250

Recall

0.6250

0.0000

0.2143

0.5357

Pracisian

0.6400 | 0.1751

0.2180

0.6019

Precisian

0.5405

0.0000

0.1364

0.7 391

F-score

0.2370 | 0.2600

0.2810

0.6132

F-score

0.5797

0.0000

0. 1657

06234

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

-58% | +50%

+7%

+14%

+Haseline

+31%

-100%

-24%

-13%

Eth Action

7th Action

LA couracy:

0.60 33

& couracy

0.4444

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.8333 | 0.0000

0.4000

0.58582

Recall

0.7500

0.0000

0.0000

0.3571

Precision

0.6250 | 0.0000

0.2z

0.8656

Precision

0.6000

0.0000

0.0000

1.0000

F-score

0.7143 | 0.0000

0.2857

0./018

F-score

0.BEE/

0.0000

0.0000

0.5263

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+93 % | -100%

+5E %

-10%

tBEas eline

+33%

-100%

- 100 %

-40%

dth Action

Last Action

LA couracy:

o.5000

& couracy

0.5560

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.4000

Reeall

0.6708

0.2553

0.2955

0.5289

Precision

0.5000 | 0.0000

0.0000

1.0000

Precision

0.8516

0.2333

01506

0.35873

F-score

O0.6667 | 0.0000

0.0000

0.5714

F-score

0.7504

0.2456

0224

0.4472

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+133% | -100%

-100%

37 %

tEaseline

%

+140%

+39%

+3l%

Table 25.

55

Results for 175-centroid,

8-state HMMs.




All Actiong

First Action

LA couracy:

04112

A couracy

0.3120

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.3328 | 0.4825

0.3057

0.4383

Recall

0.3242

05185

0.34039

0.1923

Precision

0.7505 ] 01148

0.1761

045879

Precision

0.7040

0.0745

01515

03278

F-score

0.5070 | 0.1855

0.2235

0. 45854

F-score

0.4486

01302

0.20593

0.2424

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

-29% | 2%

+20 %

+10%

tBEas eline

-43%

+2 7%

+30%

-30%

3rd Action

Sth Action

LA couracy:

0.3944

A couracy

0.5044

Fold L o

hled

High

Fald

L o

hed

High

Recall

01273 | 0.5556

0.2326

07019

Recall

0.B575

0.0000

03571

0.4762

Pracisian

0.4375 | 0.1807

0.232%6

0.5794

Precisian

0.5500

0.0000

0.1923

0.8108

F-score

01972 | 0272

0.232G

0.6348

F-score

0.6111

0.0000

02500

0.6000

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

-b5% | +57%

-12%

+18%

+Haseline

+38%

-100%

+13%

-16%

Eth Action

7th Action

LA couracy:

0.49 06

& couracy

0. 1667

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.8333 | 0.0000

0.4000

0.4118

Recall

0.7500

0.0000

0.0000

0.0000

Precision

0.5552 | 0.0000

0.1667

0.8235

Precision

0.6000

0.0000

0.0000

0.0000

F-score

0.68597 | 0.0000

0.2353

0.5490

F-score

0.BEE/

0.0000

0.0000

0.0000

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+87 % | -100%

+36 %

-30%

tBEas eline

+33%

-100%

- 100 %

-100%

dth Action

Last Action

LA couracy:

0.3333

& couracy

0.6000

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.2000

Reeall

0.7015

0.3704

0.31582

0.4615

Precision

1.0000 | 0.0000

0.0000

1.0000

Precision

0.58291

04546

0.20%0

0.3524

F-score

1.0000 | 0.0000

0.0000

0.3333

F-score

0.7600

04082

0.2523

0.4000

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+200% | -100%

-100%

E3%

tEaseline

-4%

+208%

+o6%

+1E%

Table 26.
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Results for 250-centroid,

4-state HMMs.




All Actiong

First Action

LA couracy:

0.37 45

A couracy

0.2320

Fold L o

hled

High

Fald

Lo

hed

High

Recall

0.3713 | 0.4474

0.22.8

0.4193

Recall

0.1308

07057

0.3182

0.2014

Precision

0.66596 | 0.0556

0.1311

0.45839

Precision

0.6735

0.0754

0.145%9

0.3387

F-score

04777 | 01628

0.1651

0. 4456

F-score

0.2974

01362

0.2023

0.2530

Baseline

0.7110] 01143

0.1362

0.4437

Baseline

0./8/9

0. 1025

0.1618

0.3444

tBaseline

-33% | 3%

-11%

+1%

tBEas eline

H2%

+33%

+25%

=27 %

3rd Action

Sth Action

LA couracy:

0.3308

A couracy

0.4425

Fold L o

hled

High

Fald

L o

hed

High

Recall

025364 | 0.4444

0.2555

0.55962

Recall

0.8125

0.0000

0.2143

0.3333

Pracisian

0.5306 | 01818

0.1549

0.6327

Precisian

0.4407

0.0000

0.1765

0.7 000

F-score

0.3270 | 0.2581

0.1930

0.613%9

F-score

0.57 14

0.0000

0. 1936

0.4516

Baseline

0.5554 | 01736

0.2630

0.53561

Baseline

0.4414

0.0654

02205

0.7 158

+Baszeline

1% | H49%

-27%

+15%

+Haseline

+29%,

-100%

-12%

-37%

Eth Action

7th Action

LA couracy:

0.49 06

& couracy

0.4444

Fold Lo

hled

High

Fald

Lows

Med

High

Recall

0.8333 | 0.0000

0.2000

04412

Recall

1.0000

0.0000

0.0000

0.2857

Precision

0.4345 | 0.0000

0.2500

0.7895

Precision

0.4444

0.0000

0.0000

1.0000

F-score

0.5714 | 0.0000

0220

0.5660

F-score

0.b154

0.0000

0.0000

0.4444

Baseline

0.36592 | 0.072

0.1724

0.7816

Baseline

0.3636

2.0000

2.0000

0.8750

tBaseline

+55 % | -100%

+29 %

-28%

tBEas eline

+E9 %

-100%

- 100 %

-49%

dth Action

Last Action

LA couracy:

0.3333

& couracy

0.5740

Fold L o

hled

High

Fald

L o

hed

High

Recall

1.0000 | 0.0000

0.0000

0.2000

Reeall

0.7385

0.18=2

0.1364

0.3462

Precision

0.2000 | 0.0000

0.0000

1.0000

Precision

0.7524

01613

01304

0.34k2

F-score

0.35333 | 0.0000

0.0000

0.3333

F-score

0.7453

01724

0.1333

0.34K2

Baseline

0.2857 | 2.0000

2.0000

.50

Baseline

0./87/9

0. 1025

0.1618

0.3444

zBaseline

+17 % | -100%

-100%

E3%

tEaseline

%

+H0%

-18%

+1 %

Table 27.
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Results for 500-centroid,

8 state HMMs.




B. EXPERIMENTS WITH THREE HMMS

The first table applies to all of the other tables in
Section B. It shows the number of predictions made for each

group of actions.

Category Mumber of Predictions
All Actions g43
First Action 175
3rd Action 174
Ath Action g1
Gth Action 41
7th Action 14
gth Action ]
Last Action 175
Table 28. Number of Predictions in each Action Category.
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All Actionsg First Action

Accuracy: | 05302 Accuracy: | 0.5429

L o hed High Lo hed High

Fecall | 0254402385 | 06340 | Fecall | 0.0000 [ 0.2500 | 08077

Precision | 0.2197 | 0.2650 | 0.688% | Precision | 0.0000 | 0.3333 | 0.5516

F-score | 0.2355 | 02525 | 06915 ] F-score | 0.0000 | 02857 | 0.6529

Baseline | 02382 | 053726 | 07774 | Baseline | 02675 | 04015 | 0.7455

+Baseline| -1% -32% -11% [xBaseline | -100% | -29% -8%

3rd Action Sth Action
Arccurgey: | 05402 Accuracy: | 0.5185
L o hed Hiigh Lo hed Hicgh

Recall | 02963 | 016258 | 07595 ] KRecall | 0.2500 | 0.2857 [ 0.5573

Precigion | 02581 | 02188 | 07117 | Precision | 0.0500 | 0.2355 | 0.54039

F-score | 02759 | 01867 | 07349 ] F-score | 0.0833 | 0.2531 | 0.6916

Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750

4+Baseline | +39% | -53% 2% 12Baszelne | -11% | -12% | -21%

Gth Action Tth Action
Accuracy: | 0.5366 Accuracy: | 0.3571
Lo Med High Low Med High

Fecall | 0.5000 | 0.4000 [ 055558 ] Fecall | 0.0000)|0.0000 | 0.3571

FPrecision | 0.1000 | 0.2000 | 0.9043 | Precision | 0.0000 | 0.0000 | 1.0000

F-score | 01667 | 02667 | 06909 ) F-score | 0.0000 | 0.0000 | 0.5263

Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000

tBaseline | +73% | +23% [ -24% ]+Baseline| -100% | -100% | -47%

gth Action Last Actian
Accuracy: | 0.6000 Accuracy: | 0.56371
Lo hed High L owe hied High

FHecall | 0.0000 ) 0.0000 ) 06000  Feeall 03704 [0.3182] 06751

Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.3030 | 0.3111 | 0.7217

F-score | 0.0000 | 0.0000 |0.7500) F-score | 0.3333 | 0.3146 | 0.6965

Baseline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2675 | 04015 | 0.7455

tBageline | -100% | -100% | -25% JxBaseling | +25% | -da% | 7%

Table 29. Results for 50-Centroid, 4-state HMMs.
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All Actionsg First Action

Accuracy: | 043935 Accuracy: | 0.3771

L o hed High Lo hed High

Fecall | 06053 ) 02902 | 05429 | Fecall | 0.7407 [0.2500 | 0.3365

Precision | 0.25961 | 0.2523 | 0.7500 | Precision | 022272 [0.3353 | 0.6731

F-score | 035977 | 026599 | 06299 ) F-score | 03419 | 02857 | 0.4457

Baseline | 02382 | 053726 | 07774 | Baseline | 02675 | 04015 | 0.7455

tBaseline | 57 % | -28% | -19% |zBaseline | +28% | -289% | -40%

3rd Action Sth Action
Arccurgey: | 05460 Accuracy: | 0.49538
L o hed Hiigh Lo hed Hicgh

Recall | 06296 | 03256 | 06154 ] FRecall | 0.0000|0.3571 [ 0.5556

Precigion | 04048 | 0.5044 | 07442 | Precision | 0.0000 | 01724 | 0.8537

F-score | 04925 | 03146 | 0BY37 | F-score | 0.0000 | 0.2326 | 06731

Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750

4+Baseline | H3% [ -21% | -10% | xBaselne | -100% | -21% | -23%

Gth Action Tth Action
Accuracy: | 0.5610 Accuracy: | 0.2143
Lo Med High Low Med High

Fecall | 1.0000 | 06000 | 052594 ] KRecall | 0.0000|0.0000[ 02143

FPrecision | 0.4000 | 0.1765 | 0.9474 | Precision | 0.0000 | 0.0000 | 1.0000

F-score | 05714 | 0272 | 06793 ) F-score | 0.0000 | 0.0000 | 0.3529

Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000

tBaseline | +514% | +25% | -25% ] +Baseline| -100% | -100% | -B5%

gth Action Last Actian
Accuracy: | 0.6000 Accuracy: | 0.50586
Lo hed High L owe hied High

Hecall | 0.0000 ) 0.0000 ) 06000  Feeall [0.4444 10.3636 | 0.5865

Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.3750 [ 0.2581 | 0.7531

F-score | 0.0000 | 0.0000 |0.7500) F-score | 0.4068 | 0.3013 | 0.6595

Baseline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2675 | 04015 | 0.7455

tBaseline | -100% [ -100% | -25% JzBaseling | +52% | -28% | -12%

Table 30. Results for 50-centroid, 8-state HMMs.
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All Actions First Action

Accuracy: | 04567 Accuracy: | 0.2629
L o hed High Lo hed High
Fecall | 0B055 | 0.53854 | 0.4515 Fecall 0.8889 [ 0.4318 | 0.0289
Precision | 02760 | 02731 | 07516 | Precigion | 0.2330 | 02879 | 0.5000
F-gscore | 03791 | 0.3190 [ 05641 | F-score | 03692 | 0.3455 | 0.0546
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
tBaseline | +09% | -14% | -27% |zxBaseline | +38% | -14% | -93%

3rd Action Sth Action
Arccurgey: | 05460 Accuraey: | 04631
L o hed Hiigh Lo hed Hicgh

Recall 05185 | 0.3488 | 0.6345 Recall 0.2500 | 0.2857 | 05233
Pracision | 05185 [ 0.2830 | 0.7021 | Precision | 0.0500 | 0.1818 | 0.84k2
F-score | 05185 | 03125 | 06667 | F-score | 0.0833 | 02222 05471
Baseline | 0.2687 | 0.3963 | 0.7452 | Baseline [ 0.0841 | 0.28947 | 0.5750
4Baseline | 493% | -21% | -11% J+Baselne| -11% | -26% | -26%

Gth Action Tth Action
Accuracy: | 0.5610 Accuracy: | 0.2143
Lo Med High Low Med High

Fecall | 0.5000 | 06000 | 055558 ] Kecall | 0.0000|0.0000[ 0.2143
FPrecision | 0.14259 | 0.23058 | 0.9043 | Precision | 0.0000 | 0.0000 | 1.0000
F-score | 02200103353 | 06509 ) F-score | 0.0000 | 0.0000] 0.3529
Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000
tBaseline | +139% | +53% | -24% ]+Baseline| -100% | -100% | -B5%

gth Action Last Actian
Accuracy: | 0.2000 Accuracy: | 0.4971
Lo hed High L owe hied High

Fecall | 00000 0.0000|02000) Reecall [0.4444 03864 | 06577
FPrecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2857 |0.3091 | 0.7436
F-score | 0.0000 | 0.0000 |0.55355 ) F-score | 0.3478 |0.3434 | 0.6574
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -67% JxBaseline | +30% | -15% | -158%

Table 31. Results for the 75-centroid, 4-state HMMs.
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All Actions First Action
Accuracy: | 043935 Accuracy: | 0.3429
L o hed High Lo hed High
Fecall | 0B2258 | 03109 | 05517 Fecall 0.8889 | 0.2500 | 0.2404
Precision | 0.28085 | 0.2804 | 07530 | Precigion | 0.2330 | 0.3056 | 0.65944
F-score | 03869 | 02948 | 06250 | F-score | 03692 | 02750 | 0.3571
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
+Baseline | B2% -21% | -20% | tBaseline | +38% | -32% | -52%

3rd Action Sth Action
Arccurgey: | 05575 Accuracy: | 0.5185
L o hed Hiigh Lo hed Hicgh

Recall 0.5556 | 0.3023 | 0.6R35 Recall 0.2500 | 0.2857 | 0.55873
Pracision | 0.5000 | 02766 | 0.7 113 | Precision | 0.0556 | 0.2000 | 0.8505
F-score | 05263 | 0.2889 | 06886 | F-score | 0.0909 | 0.2353 | 0.6931
Baseline | 0.2687 | 0.3963 | 0.7452 | Baseline [ 0.0841 | 0.28947 | 0.5750
4Baseline | 496% | -27% H% [+Baselne| -3% 0% | -20%

Gth Action Tth Action
Accuracy: | 0.55854 Accuracy: | 0.4286
Lo Med High Low Med High

Fecall | 0.5000 | 06000 | 058582 ] Kecall | 0.0000|0.0000 [ 0.4286
FPrecision | 0.12580 | 02727 | 0.9091 } Precision | 0.0000 | 0.0000 | 1.0000
F-score | 02000 | 03750 | 0/143 ) F-score | 0.0000 | 0.0000| 0.6000
Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000
tBaseline [ +115% | +73% | -21% ]+Baseline| -100% | -100% | -40%

gth Action Last Actian
Accuracy: | 0.4000 Accuracy: | 0.50586
Lo hed High L owe hied High

Fecall | 0.0000 (00000 |04000) Reecall [0.4444)0.3409| 055962
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.3000 | 02885 | 0.7470
F-score | 0.0000 ) 0.0000 | 05714 ) F-score | 0.3582 | 0.3125 | 0.6631
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -43% JxBaseline | +34% | -d&d% | -11%

Table 32. Results for the 75-centroid, 8-state HMMs.
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All Actionsg First Action

Accuracy: | 04781 Accuracy: | 0.2971

L o hed High Lo hed High

Fecall | 045702 )0.3834 | 04925 | Fecall |0.8389 [0.4313 | 0.08k5

Precision | 0.2766 | 0.2535 | 0.7603 | Precision | 0.2400 | 0.3065 | 0.6523

F-score | 0.3725 | 03260 | 05980 ) F-score | 0.3780 | 0.3585 | 0.1539

Baseline | 02382 | 053726 | 07774 | Baseline | 02675 | 04015 | 0.7455

tBaseline | 56% | -13% | -23% |zBaseline | +1% | -11% | -79%

3rd Action Sth Action
Arccurgey: | 05287 Accuraey: | 0.5432
L o hed Hiigh Lo hed Hicgh

Fecall | 05185 | 03256 | 06154 ] FRecall | 0.2500 | 0.4286 [ 0.5573

Precigion | 0.4000 | 02800 | 07191 | Precision | 0.0769 | 0.2308 | 0.8510

F-score | 0.4516 | 03011 | 0BB32 | F-score | 01177 | 0.3000 | 0.7045

Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750

4+Baseline | Hh8% | -24% | -11% |xBaselne | +25% +2%, -199%

Gth Action Tth Action
Accuracy: | 0.6093 Accuracy: | 0.4286
Lo Med High Low Med High

Fecall | 0.0000 | 0.6000 | 0.65471 Fecall | 0.0000 |0.0000 | 0.4286

FPrecision | 0.0000 | 0.2500 | 0.85800 § Precision | 0.0000 | 0.0000 | 1.0000

F-score | 0.0000 | 05529 | 0.7458 | F-score | 0.0000 | 0.0000 | 0.6000

Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000

tBaseline | -100% | +62% | -18% J+Baseline| -100% | -100% | -40%

gth Action Last Actian
Accuracy: | 0.4000 Accuracy: | 0.4857
Lo hed High L owe hied High

Hecall | 0.0000 ) 0.0000 ) 04000 ) Feeall [0.289:3[0.2955| 06154

Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2286 | 0.2600 | 0.7111

F-score | 0.0000 | 0.0000 | 05714 ) F-score | 0.2551 | 0.2766 | 0.6595

Baseline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2675 | 04015 | 0.7455

Baseline | -100% | -100% | -43% JzBaszeline| -2% -31% | -11%

Table 33. Results for 100-centroid, 4-state HMMs.
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All Actions First Action
Accuracy: | 05255 Accuracy: | 0.4743
L o hed High Lo hed High
Fecall | 02807 | 0.53854 | 0.B287 Fecall 0.0000 | 0.3536 | 0.5442
Precision | 0.2883 [ 02731 | 07310 | Precigion | 0.0000 | 02388 | 0.6204
F-score | 02844 | 03190 | 06760 | F-score | 0.0000 | 02883 | 0.5321
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
+Baseline | 19% -14% | -13% | +Baseline | -100% | -28% | -15%

3rd Action Sth Action
Arccurgey: | 05805 Accuracy: | 05082
L o hed Hiigh Lo hed Hicgh

Fecall | 0.4444 | 03954 |0B9X5] Hecall |0.0000)|0.3571 [ 05714
Pracision | 05217 | 03269 | 07273 | Precision | 0.0000 | 0.2000 | 0.8571
F-score | 0.4800 | 0.3579 | 07054 | F-score | 0.0000 | D.2564 | 0.6G57
Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750
+Haseline | +9% | -10% 5% |+Baseline | -100% | -13% | -22%

Gth Action Tth Action
Accuracy: | 0.55854 Accuracy: | 0.5000
Lo Med High Low Med High

Fecall | 0.0000 | 0.4000 | 0.65471 Fecall | 0.0000 |0.0000 | 0.5000
FPrecision | 0.0000 | 01667 | 0.8462 | Precision | 0.0000 | 0.0000 | 1.0000
F-score | 0.0000 | 02353 |0.7/353 ) F-score | 0.0000 | 0.0000| 06667
Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000
tBaseline | -100% | +8% | -19% J+Baseline | -100% [ -100% | -33%

gth Action Last Actian
Accuracy: | 0.2000 Accuracy: | 0.50586
Lo hed High L owe hied High

Fecall | 0.0000 | 0.0000 | 02000) Reeall [0.3335|0.3656| 06154
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2647 | 0.2509 | 0.7442
F-score | 0.0000 | 0.0000 |0.55355 ) F-score | 0.2851 |0.3232 | 0.6737
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -B7% JxBaseline | +10% | -20% | -10%

Table 34. Results for the 100-centroid, 8-state HMMs.

64



All Actions First Action

Accuracy: | 04638 Accuracy: | 0.2971
L o hed High Lo hed High
Fecall | 05088 | 0.4501 | 0.4F5R4 Fecall 0.8889 [ 0.4318 | 0.0365
Precision | 02437 | 02923 | 07788 | Precigion | 0.2400 | 03055 | 0.65923
F-gscore | 03206 | 03480 [ 05834 | F-score | 0.3780 | 0.3585| 01539
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
+Baseline | +38% -7 % -258% | +Baseline | +41% | -11% | -79%

3rd Action Sth Action
Arccurgey: | 05575 Accurgey: | 04321
L o hed Hiigh Lo hed Hicgh

Recall 04074 | 0.41868 | 0.65339 Recall 0.2500 | 0.2857 | 0.4762
Pracision | 03667 | 0.3214 | 07727 | Precision | 0.0500 | 01739 | 0.7895
F-score | 0.3860 | 03636 | 070831 F-score | 0.0833 | 02162 0.5941
Baseline | 0.2687 | 0.3963 | 0.7452 | Baseline [ 0.0841 | 0.28947 | 0.5750
4Baseline | +44% A% L% |+Baselne| -11% | -27% | -32%

Gth Action Tth Action
Accuracy: | 0.5122 Accuracy: | 0.2143
Lo Med High Low Med High

Recall | 0.5000 | 06000 [ 0.5000 Recall 0.0000 | 0.0000] 02143
Precision | 0.0909 | 02727 | 08947 | Precision | 0.0000 | 0.0000 | 1.0000
F-score | 01539 | 053750 | 06415 | F-score [ 0.0000 | 0.0000 | 0.3529
Baseline | 0.0930 | 0.2174 | 0.9067 | Baseline | 2.0000 | 2.0000 ( 1.0000
+Baselineg | H05% | +73% [ -29% | +Baszeline | -100% | -100% | -B5%

gth Action Last Actian
Accuracy: | 0.4000 Accuracy: | 0.4800
Lo hed High L owe hied High

Fecall | 0.0000 [ 0.0000 |04000) Reecall [0.4444 03636 | 0.5385
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2400 [ 0.3077 | 0.7671
F-score | 0.0000 | 0.0000 | 05714 ) F-score | 0.3117 |0.3333 | 0.6528
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -43% JxBaseline| +17% | -17% | -18%

Table 35. Results for the 175-centroids, 4-state HMMs.
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All Actions First Action
Accuracy: | 0459582 Accuracy: | 0.3488
L o hed High Lo hed High
Fecall | 05702 | 0.53751 | 05280 Fecall 0.777a [ 0.3409 | 0.2404
Precision | 026865 | 0.3064 | 07732 | Precigion | 0.2283 | 0.3333 | 0.6579
F-score | 03652 | 03365 | 06275 | F-score | 03529 | 03371 | 0.3521
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
Baseline | +03% | -10% | -19% ]JzxBaseline | +32% | -16% | -53%

3rd Action Sth Action
Arccurgey: | 05832 Accuracy: | 05082
L o hed Hiigh Lo hed Hicgh

Fecall | 05185 | 03954 | 06442 ] FRecall | 0.2500 | 02857 [ 0.5714
Precision | 04375 | 05148 | 0.7614 | Precision | 0.0558 | 0.2000| 0.8182
F-score | 04746 | 03505 | 06979 ] F-score | 00852 | 0.2353 | 06729
Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750
+Haseline | +7% | -12% % J+Baseline | +1% | -A0% | -23%

Gth Action Tth Action
Accuracy: | 0.55854 Accuracy: | 0.3571
Lo Med High Low Med High

Recall | 0.5000 | 0.4000 [ 06177 Recall 0.0000 | 0.0000 | 0.3571
Precision | 01111 | 02500 | 0.8750 | Precision | 0.0000 | 0.0000 | 1.0000
F-score | 01818 | 03077 | 07241 | F-score [ 0.0000 | 0.0000 | 0.5263
Baseline | 0.0930 | 0.2174 | 0.9067 | Baseline | 2.0000 | 2.0000 ( 1.0000
+Baselineg | +95% | +42% | -20% | +Baseline | -100% | -100% | -47 %

gth Action Last Actian
Accuracy: | 0.4000 Accuracy: | 0. 4656
Lo hed High L owe hied High

Fecall | 0.0000 [ 0.0000 |04000) Reecall |[0.4074 02955 06577
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2340 | 0.2549 | 0.7533
F-score | 0.0000 | 0.0000 05714 ) F-score | 0.28973 | 0.27357 | 0.6409
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -43% JxBaseline| +11% | -32% | -14%

Table 36. Results for the 175-centroid, 8-state HMMs.

66



All Actions First Action

Accuracy: | 04304 Accuracy: | 0.3371
L o hed High Lo hed High
Fecall | 05491 | 0.5568 | 0.459K3 Fecall 0.8889 [ 0.3409 | 0.1925
Precision | 0.2509 | 03283 | 07600 | Precigion | 0.2353 | 0.3333 | 0.7143
F-gscore | 03619 | 03325 [ 06005 ) F-score | 03721 | 0.3371 | 0.3030
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
Baseline | +02% | -11% | -23% |zxBaseline | +39% | -16% | -59%

3rd Action Sth Action
Arccurgey: | 05920 Accuraey: | 04631
L o hed Hiigh Lo hed Hicgh

Fecall | 055926 | 02555 |0.7308 ] KRecall |0.5000|0.4286 | 0.4762
Pracision | 03721 | 0.3667 | 07525 | Precision | 0.0800 | 0.2857 | 0.8571
F-score | 04571 | 03014 | 07415 F-score | 01379 | 03429 | 0612
Baseline | 0.2657 | 0.3963 [ 07457 | Baseline | 0.0941 | 0.2947 | 0.5750
+Haseline | +0% | -24% 1% [4Baseline | +47% | +16% | -30%

Gth Action Tth Action
Accuracy: | 0.4146 Accuracy: | 0.0000
Lo Med High Low Med High

Fecall | 0.5000 | 0.4000 | 0.4118] FRecall |0.0000|0.0000 [ 0.0000
FPrecision | 0.0533 | 0.1667 | 0.8235 | Precision | 0.0000 | 0.0000 | 0.0000
F-score [ 0142902353 |05490) F-score | 0.0000 | 0.0000| 0.0000
Baseline | 0.0930 | 0.2174 [ 05067 | Baseline | 2.0000 | 2.0000 | 1.0000
tBaseline | +54% | +8% | -39% |+Baseline | -100% [ -100% | -100%

gth Action Last Actian
Accuracy: | 0.2000 Accuracy: | 0.4457
Lo hed High L owe hied High

Fecall | 0.0000 | 0.0000|02000) Reecall |[0.5556)0.3409 | 0.4615
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 0.2419 |0.3125 | 0.7385
F-score | 0.0000 ) 0.0000 |0.53533) F-scaore | 0.3371|0.3261 | 0.5651
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -67% JxBaseline | +26% | -18% | -24%

Table 37. Results for the 250-centroid, 8-state HMMs.
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All Actions First Action

Accuracy: | 04081 Accuracy: | 0.3371
L o hed High Lo hed High
Fecall | 05459 | 02559 | 0.4547 Fecall 0.7037 [ 0.4318 | 0.2019
Precision | 01962 [ 02322 | 07373 | Precision | 0.2568 | 0.2639 | 0.7241
F-score | 02884 | 02426 [ 05470 ) F-score | 03762 |0.3276 ) 0.3158
Baseline | 0.25982 | 0.3726 | 0.7774 ] Baselne | 0.2673 | 0.4018 | 0.7455
+Baseline | +21% [ -35% | -30% | +Baseline | +41% | -18% | -58%

3rd Action Sth Action
Arccurgey: | 080587 Accurgey: | 0.3270
L o hed Hiigh Lo hed Hicgh

Recall 04815 | 0.2558 | 0.6154 Recall 0.5000 | 0.2143 | 0.3333
Pracision | 02766 | 0.2619 | 0.7529 | Precision | 0.0556 [ 01875 | 0.7241
F-score | 0.3514 | 02588 | 06773 F-score | 01000 | 0.2000 | 0.4565
Baseline | 0.2687 | 0.3963 | 0.7452 | Baseline [ 0.0841 | 0.28947 | 0.5750
+Baseline | +31% [ -35% H% |+Baselne| +H% | -32% | -4B%

Gth Action Tth Action
Accuracy: | 0.4146 Accuracy: | 0.3571
Lo Med High Low Med High

Recall | 0.5000 | 02000 ( 0.4412 Recall 0.0000 | 0.0000 | 0.3571
Precision | 0.0525 | 0.2500 | 0.8333 | Precigion | 0.0000 | 0.0000 | 1.0000
F-score | 00952 | 02222 | 05709 | F-score [ 0.0000 | 0.0000 | 0.5263
Baseline | 0.0930 | 0.2174 | 0.9067 | Baseline | 2.0000 | 2.0000 ( 1.0000
+Baseline | +2% +2% -36% | +Baseling | -100% | -100% | -47 %

gth Action Last Actian
Accuracy: | 0.6000 Accuracy: | 0.3143
Lo hed High L owe hied High

Fecall | 0.0000 [ 0.0000 |06000) Reecall |[0.4074)0.1364 | 0.3654
Frecision | 0.0000 | 0.0000 | 1.0000 | Precision | 01264 | 0.2143 | 06333
F-score | 0.0000 | 0.0000 |0.7500) F-score | 0.1930 | 01667 | 0.4634
Basgeline | 2.0000 | 2.0000 | 1.0000 | Baseline | 0.2673 | 0.4018 | 0.7455
xBaseline | -100% | -100% | -25% JxBaseline | -28% | -68% | -38%

Table 38. Results for the 500-centroid, 8-state HMMs.
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C. EXPERIMENTS WITH TWO HMMS

The first table applies to all of the other tables in

Section C. It shows the number of predictions made for each
group of actions. All HMMs in Section C contained eight
states.
Category | Mumber of Predictions
All Actions 1580
First Actian a00
Jrd Action 284
Last Action oS00
Table 39. Number of Predictions in each Action Category.
All Actions First Action
Accuraey | 0E71B Accurgey | 06200
Megative | Positive Megative | Positive
Fecall 0.6368 06596 Fecall 0.4286 0.7231

Precision | 0.6212 0.7215 Precision | 0.454F 0.7015

F-5core 0.6524 0.6892 F-score 044172 0.7121
Baseline 06192 0.7110 Baszeline 0.5185 0.7a7a

+Baseline +5% -3%h +Baseling -15% -10 %
Third Action Last Action
Accuracy | 0.5915 Accuracy | 0.7800
Megative | Positive Megative | Positive

Fecall 0.7644 0.3152 Fecall 0.5686 0.7323
Frecision | 06394 0. 4605 Frecision | 0 .R3R0 09119
F-score 0.5953 0.3763 F-score 0.7343 0.5123
Baseline 0.7594 0.5554 Baseline 0.5185 0.7a79

+Baseline -3 % -33% +Baseline +422% +3%
Table 40. Results for 100-centroid HMMs predicting fold or
not-fold.
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Table 41.

Table 42.

high or

Al Actions First Action
Accuracy | 06436 Accuracy | 0.BE20
Megative Positive e gative Positive
Recall 0.R054 0.7369 Recall 0. 7095 0. 4303
Frecigion | 0.8625 04275 | Precigion [ 0.8388 0.3030
F-score 0.7037 05411 F-score 0.7533 03718
Baszeline 0.8338 0.4437 Baseline 0.8339 0.3444
+Baseline -15% +22% J+Baseline -13% +3%
Third Actian Last Action
Accuracy | 06197 Accuracy | 0.B520
Megative | Pogitive Megative | Positive
Recall 0.5055 0.8173 Recall 0.5111 0.2077
Frecision | 08273 0.4385 Frecision | 09237 03529
F-score 0627k 06115 F-zcore 0725k 049132
Bazeline 07759 0.5361 Baseline 0.8339 0.3444
+Baseline -19% +14 % +Baseling -16% +43%
Results for 100-centroid HMMs predicting
not-high.
All Actiong First Action
Accuracy | 0BT Accuracy | 0.7040
MWegative | Positive Megative | Positive
Fecall 0.6155 0.57 51 Fecall 0.7245 04773
Frecision | 0.9259 0.14R3 Frecision | 0.9350 01438
F-score 0.7400 0.2332 F-score 0.8173 02211
Haseline 0.9459 0.1562 Bazeline 0.9540 0.1614
+Baseline - 2% +25% +Baseling -14 % +37
Third Action Last Action
Accaracy | 0.4894 MAccuracy | DE780
Megative Positive Megative Positive
Fecall 0.4730 0.5814 Recall 0.5864 0.5909
Frecision | [0.6R36 01645 | Precision | 0.945k 0 1533
F-score 06113 0.2564 F-score 0.7954 02441
Baseline 0.9131 02630 Baseline 0.9540 01518
+Hazeline -33% -2 +Hazeline =17 % +21 %

Results for 100-centroid HMMs predicting medium or
not-medium.
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Table 43.

Table 44.

Al Actions First Action
Accuracy | 06032 Accuracy | 0.3900
Megative Positive e gative Positive
Recall 0.R053 05702 Recall 0.3679 07778
Frecigion | 0.9567 0.0853 | Precigion | 0.9667 0.0R5E
F-score 07413 0.1454 F-score 0.5329 01210
Baszeline 0.95587 0.1143 Baseline 0.9723 01025
+Baseline -23% +30% J+Baseline -45% +18 %
Third Actian Last Action
Accuracy | 0.5689 Accuracy | 0.8480
Megative | Pogitive Megative | Positive
Recall 0.563 1 0.5556 Recall 0.8710 04074
Frecision | 09241 01191 Frecision | 09626 01528
F-score 0703k 0.159R1 F-zcore 0.9145 02223
Bazeline 0.9501 01736 Baseline 0.9723 01025
+Baseline -26% +13% +Baseling -B% +117 %

Results for

100-centroid HMMs predicting low or

not-low.
All Actiong First Action
Accuracy | 0.BR12 Accuracy | 06220
MWegative | Positive Megative | Positive
Fecall 0.6552 0.6354 Fecall 0.4229 07252
Frecision | 0.RO7Y 0.7165 Frecision | 0 4568 072
F-score 0.5459 0.6752 F-score 0.4392 0.7149
Haseline 0.6192 0.7110 Bazeline 0.5185 0.7a679
+Baseline +4% -5 +Baseling -15% -0
Third Action Last Action
Accuracy | 06021 MAccuracy | 07700
Megative Positive Megative Positive
Fecall 0.7356 0.3309 Recall 0.7771 0.7652
Frecision | [0 6564 04532 | Precision| 06415 0 oh4h
F-score 0.5933 0.4322 F-score 0.7023 0.5124
Baseline 0.7598 0.5584 Baseline 0.5185 07379
+Hazeline -5% =23 % +Hazeline +36% +3%

Results for 250-centroid HMMs predicting

not-fold.
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Table 45.

Table 46.

Al Actions First Action
Accuracy | 0.6314 Accuracy | 0.6640
Megative Positive e gative Positive
Recall 05191 0.RE23 Recall 0.7147 04712
Frecigion | 08213 0.4095 | Precigion | 0.8373 03025
F-score 0.7060 05061 F-score 07711 03654
Baszeline 0.8338 0.4437 Baseline 0.8339 0.3444
Basze -15% +14 % Basze -13% +7 %
Third Actian Last Action
Accuracy | 0.5845 Accuracy | 0.B280
Megative | Pogitive Megative | Positive
Recall 0. 4555 0.8077 Recall 05152 0 G535
Frecision | 08039 04615 Frecision | 08746 03122
F-score 0.581F 055874 F-zcore 07430 04246
Bazeline 07759 0.5361 Baseline 0.8339 0.3444
Basze -25% +10% Base -18% +23%

Results for 250-centroid HMMs predicting high or

not-high.
All Actiong First Action
Accuracy | 06261 Accuracy | 0.7040
MWegative | Positive Megative | Positive
Fecall 0.6343 0.5544 Fecall 0.7245 04773
Frecision | 0.9255 0.1473 Frecision | 0.9350 01438
F-score 0.7527 0.2334 F-score 0.8173 02211
Haseline 0.9459 0.1562 Bazeline 0.9540 0.1614
+Baseline -20% +25% +Baseling -14 % +37
Third Action Last Action
Accaracy | 05246 MAccuracy | 07220
Megative Positive Megative Positive
Fecall 0.5228 0.5349 Recall 0.7303 0.5354
Frecision | 0.8630 01667 | Precision | 0.9547 01554
F-score 05512 02541 F-score 0.8273 02572
Baseline 0.9131 02630 Baseline 0.9540 01518
+Hazeline -29% 3% +Hazeline -13% +75 %

Results for 250-centroid HMMs predicting medium or

not-medium.

72




Table 47.

Table 48.

Al Actions First Action
Accuracy | 0.B5A3 Accuracy | 044980
Megative Positive e gative Positive
Recall 0.FR45 0.5088 Recall 0. 4955 0.5185
Frecigion | 0.9545 0.0892 | Precigion | 0.947G 0.0556
F-score 0.7837 015138 F-score 06519 01004
Baszeline 0.95587 0.1143 Baseline 0.9723 01025
+Baseline -19% +33% J+Baseline -33% 2%
Third Actian Last Action
Accuracy | 0.6338 Accuracy | 0.8580
Megative | Pogitive Megative | Positive
Recall 0.5459 0.5185 Recall 0.8774 04315
Frecision | 09274 0.1333 Frecision | 09674 0.1831
F-score 0.7E15 0212 F-zcore 0,902 0.2R53
Bazeline 0.9501 01736 Baseline 0.9723 01025
+Baseline -20% +22 % +Baseling -5% +158 %

Results for 250-centroid HMMs predicting low or

not-low.
All Actiong First Action
Accuracy | 06128 Accuracy | 05640
MWegative | Positive Megative | Positive
Fecall 0.6536 0.57 96 Fecall 0.4300 06052
Frecision | 0.55653 0.6730 Frecision [ 0.33951 0.R5351
F-score 0.6022 0.6223 F-score 0.4352 0.R4.50
Haseline 0.6192 0.7110 Bazeline 0.5185 0.7a679
+Baseline -3% -12 % +Baseling -16% -18 %
Third Action Last Action
Accaracy | 06338 Accuracy | 07080
Megative Positive Megative Positive
Fecall 0.7939 0.37 27 Recall 0.6057 0.7631
Frecision | [0 6R33 05395 | Precision | 057372 07523
F-score 07278 0.4409 F-score 0.5922 07725
Baseline 0.7598 0.5584 Baseline 0.5185 07379
+Hazeline -4 % =21 % +Hazeline +14% -2

Results for 500-centroid HMMs predicting

not-fold.
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Table 49.

Table 50.

Al Actions First Action
Accuracy | 0.6420 Accuracy | 0.6940
Megative Positive e gative Positive
Recall 065414 05437 Recall 07727 03342
Frecigion | 0.818k 04172 | Precigion | 0.8293 0.3130
F-score 0.7192 05062 F-score 0.8000 03489
Baszeline 0.8338 0.4437 Baseline 0.8339 0.3444
+Baseline -14% +14% J+Baseline -H9% +1%
Third Actian Last Action
Accuracy | 06197 Accuracy | 06120
Megative | Pogitive Megative | Positive
Recall 0.5278 07789 Recall 0.5354 0.7019
Frecision | 0.8051 0.4380 Frecision | 08826 03093
F-score 0.637k 0.6000 F-zcore 0.70k1 04294
Bazeline 07759 0.5361 Baseline 0.8339 0.3444
+Baseline -18% +12% +Baseling -20% +25 %
Results for 500-centroid HMMs predicting high or
not-high.
All Actiong First Action
Accuracy | 06372 Accuracy | 06340
MWegative | Positive Megative | Positive
Fecall 0.657 4 0.4611 Fecall 0.7171 0. 4546
Precision | 0.9143 0.1334 Frecision | 0.9316 0.1342
F-score 0.7643 0.2070 F-score 0.8104 02073
Haseline 0.9459 0.1562 Bazeline 0.9540 0.1614
+Baseline -19% +11% +Baseling -15% +28 %
Third Action Last Action
Accaracy | 05739 Accuracy | DE740
Megative Positive Megative Positive
Fecall 0.597 5 0.4419 Recall 0.5864 0.5455
Frecision | 08571 01635 | Precision | 0.9393 01437
F-score 0.7042 0.2390 F-score 0.7934 02275
Baseline 0.9131 02630 Baseline 0.9540 01518
+Hazeline -23% 4% +Hazeline =17 % +41 %

Results for 500-centroid HMMs predicting medium or

not-medium.
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Al Actions First Action
Accuracy | 0.60711 Accuracy | 04220
Megative Positive e gative Positive
Recall 0.R053 0.5351 Recall 0.4038 0.7407
Frecigion | 0.9528 0.0805 | Precigion [ 0.9547 0.0RE2
F-score 0.7403 0.1399 F-score 0.5593 01216
Baszeline 0.95587 0.1143 Baseline 0.9723 01025
+Baseline -14% +22% J+Baseline -4 % +159 %
Third Actian Last Action
Accuracy | 0.B549 Accuracy | 0.7280
Megative | Pogitive Megative | Positive
Recall 0.6770 0.4444 Recall 0.7421 04444
Frecision | 09206 0.12R3 Frecision | 09590 0.0535%
F-score 0.7803 0.19K7 F-zcore 0837 0149
Bazeline 0.9501 01736 Baseline 0.9723 01025
+Baseline -18% +13% +Baseling -14 % +45 %

Table 51. Results for 500-centroid HMMs predicting low or

not-low.
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